Wednesday, September 18, 2019

Aquaculture in Neolithic China Dates Back 8,000 Years

By using age-mortality and species-selection profiles from prehistoric East Asia, researchers identified carp aquaculture in Henan Province, China, thousands of years earlier than previously reported.

In a recent study, an international team of researchers analyzed fish bones excavated from the Early Neolithic Jiahu site in Henan Province, China. By comparing the body-length distributions and species-composition ratios of the bones with findings from East Asian sites with present aquaculture, the researchers provide evidence of managed carp aquaculture at Jiahu dating back to 6200-5700 BC.

Preparing to drain the field at Matsukawa village, Japan

 Credit: © Mark Hudson

Despite the growing importance of farmed fish for economies and diets around the world, the origins of aquaculture remain unknown. The Shijing, the oldest surviving collection of ancient Chinese poetry, mentions carp being reared in a pond circa 1140 BC, and historical records describe carp being raised in artificial ponds and paddy fields in East Asia by the first millennium BC. But considering rice paddy fields in China date all the way back to the fifth millennium BC, researchers from Lake Biwa Museum in Kusatu, Japan, the Max Planck Institute for the Science of Human History in Jena, Germany, the Sainsbury Institute for the Study of Japanese Arts and Cultures in Norwich, U.K., and an international team of colleagues set out to discover whether carp aquaculture in China was practiced earlier than previously thought.

Carp farming goes way back in Early Neolithic Jiahu

Jiahu, located in Henan, China, is known for the early domestication of rice and pigs, as well the early development of fermented beverages, bone flutes, and possibly writing. This history of early development, combined with archaeological findings suggesting the presence of large expanses of water, made Jiahu an ideal location for the present study.

Researchers measured 588 pharyngeal carp teeth extracted from fish remains in Jiahu corresponding with three separate Neolithic periods, and compared the body-length distributions with findings from other sites and a modern sample of carp raised in Matsukawa Village, Japan. While the remains from the first two periods revealed unimodal patterns of body-length distribution peaking at or near carp maturity, the remains of Period III (6200-5700 BC) displayed bimodal distribution, with one peak at 350-400 mm corresponding with sexual maturity, and another at 150-200 mm.

Co-author Junzo Uchiyama preparing to measure common carp removed from the paddy field

Credit: © Mark Hudson

This bimodal distribution identified by researchers was similar to that documented at the Iron Age Asahi site in Japan (circa 400 BC – AD 100), and is indicative of a managed system of carp aquaculture that until now was unidentified in Neolithic China. “In such fisheries,” the study notes, “a large number of cyprinids were caught during the spawning season and processed as preserved food. At the same time, some carp were kept alive and released into confined, human regulated waters where they spawned naturally and their offspring grew by feeding on available resources. In autumn, water was drained from the ponds and the fish harvested, with body-length distributions showing two peaks due to the presence of both immature and mature individuals.”

Species-composition ratios support findings, indicate cultural preferences

The size of the fish wasn’t the only piece of evidence researchers found supporting carp management at Jiahu. In East Asian lakes and rivers, crucian carp are typically more abundant than common carp, but common carp comprised roughly 75% of cyprinid remains found at Jiahu. This high proportion of less-prevalent fish indicates a cultural preference for common carp and the presence of aquaculture sophisticated enough to provide it.

Based on the analysis of carp remains from Jiahu and data from previous studies, researchers hypothesize three stages of aquaculture development in prehistoric East Asia. In Stage 1, humans fished the marshy areas where carp gather during spawning season. In Stage 2, these marshy ecotones were managed by digging channels and controlling water levels and circulation so the carp could spawn and the juveniles later harvested. Stage 3 involved constant human management, including using spawning beds to control reproduction and fish ponds or paddy fields to manage adolescents.

Although rice paddy fields have not yet been identified at Jiahu, the evolution of carp aquaculture with wet rice agriculture seems to be connected, and the coevolution of the two is an important topic for future research.

Contacts and sources:
Anne Gibson
Max Planck Institute for the Science of Human History
Citation: Common carp aquaculture in Neolithic China dates back 8,000 years. Tsuneo Nakajima, Mark J. Hudson, Junzo Uchiyama, Keisuke Makibayashi, Juzhong Zhang. DOI: 10.1038/s41559-019-0974-3 Nature Ecology & Evolution,

Dust from a Giant Asteroid Crash Caused an Ancient Ice Age

About 466 million years ago, long before the age of the dinosaurs, the Earth froze. The seas began to ice over at the Earth’s poles, and the new range of temperatures around the planet set the stage for a boom of new species evolving. The cause of this ice age was a mystery, until now: a new study in Science Advances argues that the ice age was caused by global cooling, triggered by extra dust in the atmosphere from a giant asteroid collision in outer space.

There’s always a lot of dust from outer space floating down to Earth, little bits of asteroids and comets, but this dust is normally only a tiny fraction of the other dust in our atmosphere such as volcanic ash, dust from deserts and sea salt. But when a 93-mile-wide asteroid between Mars and Jupiter broke apart 466 million years ago, it created way more dust than usual.

Credit: State Farm / Wikimedia Commons / Basilicofresco.

 “Normally, Earth gains about 40,000 tons of extraterrestrial material every year,” says Philipp Heck, a curator at the Field Museum, associate professor at the University of Chicago, and one of the paper’s authors. “Imagine multiplying that by a factor of a thousand or ten thousand.” To contextualize that, in a typical year, one thousand semi trucks’ worth of interplanetary dust fall to Earth. In the couple million years following the collision, it’d be more like ten million semis.

“Our hypothesis is that the large amounts of extraterrestrial dust over a timeframe of at least two million years played an important role in changing the climate on Earth, contributing to cooling,” says Heck.

“Our results show for the first time that such dust, at times, has cooled Earth dramatically,” says Birger Schmitz of Sweden’s Lund University, the study’s lead author and a research associate at the Field Museum. “Our studies can give a more detailed, empirical-based understanding of how this works, and this in turn can be used to evaluate if model simulations are realistic.”

To figure it out, researchers looked for traces of space dust in 466-million-year-old rocks, and compared it to tiny micrometeorites from Antarctica as a reference. “We studied extraterrestrial matter, meteorites and micrometeorites, in the sedimentary record of Earth, meaning rocks that were once sea floor,” says Heck. “And then we extracted the extraterrestrial matter to discover what it was and where it came from.”

Extracting the extraterrestrial matter—the tiny meteorites and bits of dust from outer space—involves taking the ancient rock and treating it with acid that eats away the stone and leaves the space stuff. The team then analyzed the chemical makeup of the remaining dust. The team also analyzed rocks from the ancient seafloor and looked for elements that rarely appear in Earth rocks and for isotopes—different forms of atoms—that show hallmarks of coming from outer space. For instance, helium atoms normally have two protons, two neutrons, and two electrons, but some that are shot out of the Sun and into space are missing a neutron. The presence of these special helium isotopes, along with rare metals often found in asteroids, proves that the dust originated from space.

Other scientists had already established that our planet was undergoing an ice age around this time. The amount of water in the Earth’s oceans influences the way that rocks on the seabed form, and the rocks from this time period show signs of shallower oceans—a hint that some of the Earth’s water was trapped in glaciers and sea ice. Schmitz and his colleagues are the first to show that this ice age syncs up with the extra dust in the atmosphere. “The timing appears to be perfect,” he says. The extra dust in the atmosphere helps explain the ice age—by filtering out sunlight, the dust would have caused global cooling.

Since the dust floated down to Earth over at least two million years, the cooling was gradual enough for life to adapt and even benefit from the changes. An explosion of new species evolved as creatures adapted for survival in regions with different temperatures.

Heck notes that while this period of global cooling proved beneficial to life on Earth, fast-paced climate change can be catastrophic. “In the global cooling we studied, we’re talking about timescales of millions of years. It’s very different from the climate change caused by the meteorite 65 million years ago that killed the dinosaurs, and it’s different from the global warming today—this global cooling was a gentle nudge. There was less stress.”

It’s tempting to think that today’s global warming could be solved by replicating the dust shower that triggered global cooling 466 million years ago. But Heck says he would be cautious: “Geoengineering proposals should be evaluated very critically and very carefully, because if something goes wrong, things could become worse than before.”

While Heck isn’t convinced that we’ve found the solution to climate change, he says it’s a good idea for us to be thinking along these lines.

“We’re experiencing global warming, it’s undeniable,” says Heck. “And we need to think about how we can prevent catastrophic consequences, or minimize them. Any idea that’s reasonable should be explored.”

This study was contributed to by scientists from the Field Museum, the University of Chicago, Lund University (lead), the California Institute of Technology, Vriije Universiteit Brussel, Ohio State University, Université Libre de Bruxelles, Russian Academy of Sciences, Federal University Kazan, Royal Belgian Institute of Natural Sciences, Durham University, Chinese Academy of Sciences, Center for Excellence in Comparative Paleontology China, ETH Zürich, Naturmuseum St. Gallen Switzerland, and Woods Hole Oceanographic Institution.

Contacts and sources:
Field Museum

Citation: An extraterrestrial trigger for the mid-Ordovician ice age: Dust from the breakup of the L-chondrite parent body. Birger Schmitz, Kenneth A. Farley, Steven Goderis, Philipp R. Heck, Stig M. Bergström, Samuele Boschi, Philippe Claeys, Vinciane Debaille, Andrei Dronov, Matthias Van Ginneken, David A.t. Harper, Faisal Iqbal, Johan Friberg, Shiyong Liao, Ellinor Martin, Matthias M. M. Meier, Bernhard Peucker-Ehrenbrink, Bastien Soens, Rainer Wieler and Fredrik Terfelt. Science Advances, 2019 DOI: 10.1126/sciadv.aax4184