Tuesday, June 30, 2020

Researchers Identify Multiple Molecules that Shut Down SARS-Cov-2 Polymerase Reaction



SARS-CoV-2, the coronavirus causing the global COVID-19 pandemic, uses a protein called polymerase to replicate its genome inside infected human cells. Terminating the polymerase reaction will stop the growth of the coronavirus, leading to its eradication by the human host’s immune system.

Researchers at Columbia Engineering and the University of Wisconsin-Madison have identified a library of molecules that shut down the SARS-CoV-2 polymerase reaction, a key step that establishes the potential of these molecules as lead compounds to be further modified for the development of COVID-19 therapeutics. Five of these molecules are already FDA-approved for use in the treatment of other viral infections including HIV/AIDS, cytomegalovirus, and hepatitis B. The new study was published on June 18, 2020, in Antiviral Research.

This figure shows that the incorporation of three nucleotide analogues Carbovir-5’-Triphosphate (Car-TP), Entecavir-5’-Triphosphate (Ent-TP), and Ganciclovir-5’-Triphosphate (Gan-TP) by SARS-CoV-2 polymerase terminates the viral polymerase reaction. The reaction products were detected by MALDI-TOF mass spectrometry
Figure of the SARS-Cov-2 Polymerase Reaction
 Credit: Jingyue Ju/Columbia Engineering

The Columbia team initially reasoned that the active triphosphate of the hepatitis C drug sofosbuvir and its derivative could act as a potential inhibitor of the SARS-CoV-2 polymerase based on the analysis of their molecular properties and the replication requirements of both the hepatitis C virus and coronaviruses. Led by Jingyue Ju, Samuel Ruben-Peter G. Viele Professor of Engineering, professor of chemical engineering and pharmacology, and director of the Center for Genome Technology & Biomolecular Engineering at Columbia University, they then collaborated with Robert N. Kirchdoerfer, assistant professor of biochemistry and an expert in the study of coronavirus polymerases at University of Wisconsin-Madison’s Institute for Molecular Virology and the department of biochemistry.

In an earlier set of experiments testing the properties of the polymerase of the coronavirus that causes SARS, the researchers found that the triphosphate of sofosbuvir was able to terminate the virus polymerase reaction. They then demonstrated that sofosbuvir and four other nucleotide analogues (the active triphosphate forms of the HIV inhibitors Alovudine, Zidovudine, Tenofovir alafenamide, and Emtricitabine) also inhibited the SARS-CoV-2 polymerase with different levels of efficiency.

Using the molecular insight gained in these investigations, the team devised a strategy to select 11 nucleotide analogue molecules with a variety of structural and chemical features as potential inhibitors of the polymerases of SARS-CoV and SARS-CoV-2. While all 11 molecules tested displayed incorporation, six exhibited immediate termination of the polymerase reaction, two showed delayed termination, and three did not terminate the polymerase reaction.

Prodrug medications of five of these nucleotide analogues (Cidofovir, Abacavir, Valganciclovir/Ganciclovir, Stavudine, and Entecavir) that terminate the SARS-CoV-2 polymerase reaction are FDA-approved for the treatment of other viral infections and their safety profiles are well established. Once the potency of the drugs to inhibit viral replication in cell culture is demonstrated in future investigations, then the candidate molecules and their modified forms may be evaluated for the development of potential COVID-19 therapies.

"In our efforts to help tackle this global emergency, we are very hopeful that the structural and chemical features of the molecules we identified, in correlation with their inhibitory activity to the SARS-CoV-2 polymerase, can be used as a guide to design and synthesize new compounds for the development of COVID-19 therapeutics,” says Ju. “We are extremely grateful for the generous research support that enabled us to make rapid progress on this project. I am also grateful for the outstanding contributions made by each member of our collaborative research consortium.”





Contacts and sources:
Holly Evart
Columbia University School of Engineering and Applied Science

 Publication:A library of nucleotide analogues terminate RNA synthesis catalyzed by polymerases of coronaviruses that cause SARS and COVID-19.
Steffen Jockusch, Chuanjuan Tao, Xiaoxu Li, Thomas K. Anderson, Minchen Chien, Shiv Kumar, James J. Russo, Robert N. Kirchdoerfer, Jingyue Ju. Antiviral Research, 2020; 180: 104857 DOI: 10.1016/j.antiviral.2020.104857










1 comment:

  1. God bless Dr. USELU for his marvelous work in my life, I was diagnosed of HERPES SIMPLEX VIRUS since 2018 and I was taking my medications, I wasn't satisfied i needed to get the HERPES out of my system, I searched about some possible cure for HERPES i saw a comment about Dr. USELU , how he cured HERPES with his herbal medicine, I contacted him and he guided me. I asked for solutions, he started the remedy for my health, he sent me the medicine within 3 days. I took the medicine as prescribed by him and 2weeks later i was cured from HERPES contact him via email (dr.uselucaregiver@gmail.com) once again thanks to you Dr. USELU cure the flowing virus, contact his email or add him on whatsapp (+2348132015009) cancer cure
    diabetes cure
    ringing ear
    herpes cure
    warts cure
    HPV cure
    HIV cure
    get your ex back
    pregnancy herbal medicine
    Hepatitis

    ReplyDelete