Wednesday, June 17, 2020

Coal-Burning in Siberia Caused Earth's Greatest Extinction by Catastrophic Global Warming after 2 Million Year Volcanic Eruption



A team of researchers led by Arizona State University School of Earth and Space Exploration Professor Lindy Elkins-Tanton has provided the first ever direct evidence that extensive coal burning in Siberia is a cause of the Permo-Triassic Extinction, the Earth’s most severe extinction event. The results of their study have been recently published in the journal Geology.


For this study, the international team led by Elkins-Tanton focused on the volcaniclastic rocks of the Siberian Traps, a region of volcanic rock in Russia. The massive eruptive event that formed the traps is one of the largest known volcanic events in the last 500 million years. The eruptions continued for roughly 2 million years and spanned the Permian-Triassic boundary. Today, the area is covered by about 3 million square miles of basaltic rock. A cliff over 300 feet high on the Angara River, consisting entirely of volcaniclastics. 

Credit: Scott Simper 

This is ideal ground for researchers seeking an understanding of the Permo-Triassic extinction event, which affected all life on Earth approximately 252 million years ago. During this event, up to 96% of all marine species and 70% of terrestrial vertebrate species became extinct.

Calculations of sea water temperature indicate that at the peak of the extinction, the Earth underwent lethally hot global warming, in which equatorial ocean temperatures exceeded 104 degrees Fahrenheit. It took millions of years for ecosystems to be re-established and for species to recover.

Among the possible causes of this extinction event, and one of the most long-hypothesized, is that massive burning coal led to catastrophic global warming, which in turn was devastating to life. To search for evidence to support this hypothesis, Elkins-Tanton and her team began looking at the Siberian Traps region, where it was known that the magmas and lavas from volcanic events burned a combination of vegetation and coal.

While samples of volcaniclastics in the region were initially difficult to find, the team eventually discovered a scientific paper describing outcrops near the Angara River.

“We found towering river cliffs of nothing but volcaniclastics, lining the river for hundreds of miles. It was geologically astounding,” Elkins-Tanton said.

Coal and charcoal pieces in the volcanic rocks of the Siberian flood basalts (A&B). In northern Siberia, coal was sometimes liquefied by the heat of lava, and squeezed like toothpaste into cracks, solidifying lava (C). In both northern and southern Siberia, the team found lava filled with pieces of baked hydrocarbons, like raisins in a cake (D).
Photo credit: Lindy Elkins-Tanton/ASU


Columnar basalt from the Siberian flood basalts on an island in the Angara river, south of the volcaniclastics province. Left to right: Scott Simper, Lindy Elkins-Tanton, Sam Bowring, Seth Burgess and Ben Black.
Photo credit: Scott Simper

A lump of coal weathering out from Siberian flood basalts in a quarry near the town of Ust Ilimsk.

 Photo credit: Scott Simper


Over six years, the team repeatedly returned to Siberia for field work. They flew to remote towns and were dropped by helicopter either to float down rivers collecting rocks, or to hike across the forests. They ultimately collected over 1,000 pounds of samples, which were shared with a team of 30 scientists from eight different countries.

As the samples were analyzed, the team began seeing strange fragments in the volcaniclastics that seemed like burnt wood, and in some cases, burnt coal. Further field work turned up even more sites with charcoal, coal, and even some sticky organic-rich blobs in the rocks.

Elkins-Tanton then collaborated with fellow researcher and co-author Steve Grasby of the Geological Survey of Canada, who had previously found microscopic remains of burnt coal on a Canadian arctic island. Those remains dated to the end-Permian and were thought to have wafted to Canada from Siberia as coal burned in Siberia. Grasby found that the Siberian Traps samples collected by Elkins-Tanton had the same evidence of burnt coal.

“Our study shows that Siberian Traps magmas intruded into and incorporated coal and organic material,” Elkins-Tanton said. “That gives us direct evidence that the magmas also combusted large quantities of coal and organic matter during eruption.”

And the changes at the end-Permian extinction bear remarkable parallels to what is happening on Earth today, including burning hydrocarbons and coal, acid rain from sulfur and even ozone-destroying halocarbons.

“Seeing these similarities gives us extra impetus to take action now, and also to further understand how the Earth responds to changes like these in the longer term,” Elkins-Tanton said.

Additional study co-authors include Benjamin Black of City College of New York, Roman Veselovskiy of the Institute of Physics of the Earth (Russia), Omid Haeri Ardakani of the Geological Survey of Canada, and Fariborz Goodarzi of FG & Partners Ltd.




Contacts and sources:
Karin Valentine
Arizona State University



Publication:Field evidence for coal combustion links the 252 Ma Siberian Traps with global carbon disruption.F. Goodarzi, O.H. Ardakani, R.V. Veselovskiy, B.A. Black, S.E. Grasby, L.T. Elkins-Tanton. Geology, 2020; DOI: 10.1130/G47365.1




2 comments:

  1. Thank you for sharing such great information.
    It has help me in finding out more detail about online cake order mumbai

    ReplyDelete
  2. This is a fantastic website , thanks for sharing. Carbon Electrode Paste

    ReplyDelete