Monday, October 29, 2018

Importance of Infant Diet in Establishing a Healthy Gut



A child has until the age of two-and-a-half to establish healthy gut bacteria – with little change after this point, new research has revealed.

The study also reinforced the important role breastfeeding plays in providing good gut bacteria to babies during the early stages of their life.

The team, involving Newcastle University, identified that the bacterium, Bifidobacterium, was abundant in breast milk and declined rapidly after breastfeeding stopped.

Credit: University of Newcastle


The research, published today in the journal Nature, is one of the largest clinical microbiome studies in babies to date.

Key bacteria

Dr Christopher Stewart, from Newcastle University’s Institute of Cellular Medicine, co-led the research, which used a cohort of patients involved in the pioneering TEDDY (The Environmental Determinants of Diabetes in the Young) study.

Bifidobacterium is regarded as beneficial and is one of the main bacteria used in probiotics, owing to its potential therapeutic properties.

It is hoped that this research will enable a greater understanding into what can be done to produce the same benefits of breastfeeding when breast milk is not available.

Dr Stewart said: “Breastfeeding has long been understood to be good for infants and epidemiological evidence shows being breastfed early in life is associated with lower risk of many later life diseases, such as allergy and obesity.

“Targeting the nutrients in breast milk that encourage the growth of healthy bacteria in the infant gut, or providing probiotic containing Bifidobacterium, represent important avenues for future research aimed at restoring the beneficial properties of being breastfed when breast milk is not available.”

The research revealed that once infants were weaned there was a rapid turnover in the bacterial community and a loss of most of the Bifidobacterium, replaced by bacteria within the Firmicutes phyla. Firmicutes are typical of an adult microbiome and the appearance of these bacteria once breastfeeding was stopped occurred much quicker than experts expected.

Dr Stewart said: “Because a diet without breast milk delivers different nutrients to the gut, this rapid turnover in the bacterial community is likely to be in response to the new food sources promoting the growth of a different community.

“Remarkably, from this point on, the microbiome progressed quickly towards being stable, where the bacteria in the gut will potentially remain for the rest of that individual’s life.”

Microbiome development

Scientists used sequencing-based approaches to analyse 12,500 stool samples from 903 children in the TEDDY study, collected monthly from children aged three to 46 months old. Microbiome composition and diversity changed over time in three distinct phases: the developmental phase (3–14 months), transitional phase (15–30 months) and stable phase (31 months onwards).

Vaginal birth was associated with a temporary increase in Bacteroides bacteria. Siblings, exposure to pets, and geographical location were also factors in the differences between microbiome profiles.

Dr Joseph Petrosino, Director of the Alkek Center for Metagenomics and Microbiome Research at Baylor College of Medicine, Texas, USA, was group leader of the microbiome study.

He said: “We know that the first few years of life are important for microbiome establishment. You are born with very few microbes, and microbial communities assemble on and in your body through those first years of your life.

“In this study, we took a closer look at the establishment of the microbiome over the first few years of life, and the early life exposures associated with that sequence of events, in this amazing cohort.”

In a sister paper in the same journal, experts from the Broad Institute analysed nearly 11,000 stool samples from 783 infants in the TEDDY study to characterise the early gut microbiome in children progressing to type 1 diabetes. They report that the microbiomes of infants without type 1 diabetes harbour more genes related to fermentation and short-chain fatty-acid synthesis that, in combination with previous evidence, are associated with a protective effect.

TEDDY study

The research was conducted as part of the multinational TEDDY study, which is comprised of three European clinical centres (Finland, Germany, Sweden) and three in the USA (Colorado, Georgia, and Washington state).

Funded by the National Institutes of Health’s National Institute of Diabetes and Digestive and Kidney Diseases, the study has been collecting data for 10 years with the goal of understanding what triggers a child who is genetically at higher risk for developing type 1 diabetes (T1D) to actually develop the disease.


Contacts and sources: 
University of Newcastle


Citation: Temporal development of the gut microbiome in early childhood from the TEDDY study
Christopher J. Stewart, Nadim J. Ajami, Jacqueline L. O’Brien, Diane S. Hutchinson, Daniel P. Smith, Matthew C. Wong, Matthew C. Ross, Richard E. Lloyd, HarshaVardhan Doddapaneni, Ginger A. Metcalf, Donna Muzny, Richard A. Gibbs, Tommi Vatanen, Curtis Huttenhower, Ramnik J. Xavier, Marian Rewers, William Hagopian, Jorma Toppari, Anette-G. Ziegler, Jin-Xiong She, Beena Akolkar, Ake Lernmark, Heikki Hyoty, Kendra Vehik, Jeffrey P. Krischer, Joseph F. Petrosino. . Nature, 2018; 562 (7728): 583 DOI: 10.1038/s41586-018-0617-x

.



1 comment:

  1. I lives in United States, help me thank DR. covenant who helped cured me from HERPES SIMPLEX in just one (1) week. I got
    to know him from a friend who he helped, at first I doubt if his herbal
    product would work until my friend put her car at stake that if it doesn't
    work she would give me her car. After which I decided to try, to God be the
    glory am now a living testimony, all thanks to DR. covenant, if not for him I would
    not have been healed so easily.. You can reach him via
    covenantsolutiontemple@gmail.com or call/whatsapp at +2349057353987, you can also
    contact him on cure on......
    1. GONORRHEA
    2. SYPHILIS
    3. ASTHMA
    4. STROKE
    5. DIABETES MELLIFLUOUS
    6. SIMPLEX HERPES
    7. RINGING EAR
    8.LOW SPERM COUNT
    9.SICKLE CELL
    10.HIV/AIDS
    11.CANCER
    12.LYME DISEASE

    ReplyDelete