Wednesday, October 31, 2018

Mysterious Flashes in the Sky Seen by Synchronized Telescopes

Two outback radio telescopes synchronized to observe the same point of sky have discovered more about one of the Universe’s most mysterious events in new research published today.

The Curtin University-led Murchison Widefield Array (MWA) and CSIRO’s Australian SKA Pathfinder (ASKAP) telescopes were searching the sky for fast radio bursts, which are exceptionally bright flashes of energy coming from deep space.

These extreme events last for only a millisecond but are so bright that many astronomers initially dismissed the first recorded fast radio burst as an observational error.

The Murchison Widefield Array (MWA) is a low frequency radio telescope and is the first of four Square Kilometre Array (SKA) precursors to be completed.
Credit: ICRAR


In research published in the Astrophysical Journal Letters, astronomers describe how ASKAP detected several extremely bright fast radio bursts, but the MWA—which scans the sky at lower frequencies—did not see anything, even though it was pointed at the same area of sky at the same time.

Lead author Dr Marcin Sokolowski, from the Curtin University node of the International Centre for Radio Astronomy Research (ICRAR), said the fact that the fast radio bursts were not observed at lower frequencies was highly significant.

“When ASKAP sees these extremely bright events and the MWA doesn’t, that tells us something really unexpected is going on; either fast radio burst sources don’t emit at low frequencies, or the signals are blocked on their way to Earth,” Dr Sokolowski said.


An artist’s impression of fast radio bursts (FRBs). An Australian team of researchers has shown that the brighter FRBs, discovered using CSIRO’s ASKAP radio telescope, are probably in galaxies that are quite nearby, while fainter ones (found previously) are likely to be much more distant. 


An artist’s impression of fast radio bursts (FRBs). An Australian team of researchers has shown that the brighter FRBs, discovered using CSIRO’s ASKAP radio telescope, are probably in galaxies that are quite nearby, while fainter ones (found previously) are likely to be much more distant. 

Credit: OzGrav, Swinburne University of Technology.

Credit: OzGrav, Swinburne University of Technology.

A fast radio burst leaves a distant galaxy, travelling to Earth over billions of years and occasionally passing through clouds of gas in its path. Each time a cloud of gas is encountered, the different wavelengths that make up a burst are slowed by different amounts. Timing the arrival of the different wavelengths at a radio telescope tells us how much material the burst has travelled through on its way to Earth and allows astronomers to to detect “missing” matter located in the space between galaxies.

A fast radio burst leaves a distant galaxy, travelling to Earth over billions of years and occasionally passing through clouds of gas in its path. Each time a cloud of gas is encountered, the different wavelengths that make up a burst are slowed by different amounts. Timing the arrival of the different wavelengths at a radio telescope tells us how much material the burst has travelled through on its way to Earth and allows astronomers to to detect “missing” matter located in the space between galaxies.

Credit: CSIRO/ICRAR/OzGrav/Swinburne University of Technology

Study co-author Dr Ramesh Bhat, who is also based at ICRAR-Curtin, said it required considerable co-ordination to get the CSIRO-led ASKAP telescope and Curtin-led MWA telescope pointed at the same area of sky at the same time.

Both telescopes were able to capture the same view because the two telescopes are located side-by-side in the desert of Western Australia’s remote Murchison region.

“Fast radio bursts are unpredictable, so to catch them when both telescopes are looking in the same direction isn’t easy,” Dr Bhat said.

“It took many months of ASKAP and the MWA co-tracking the same area of sky, ensuring the best overlap of their views possible, to give us the chance at catching some of these enigmatic bursts.

“The challenge was in making it all happen automatically, but it really paid off.”

ICRAR-Curtin astronomer Dr Jean-Pierre Macquart, also a co-author of the research, said fast radio bursts have perplexed astronomers ever since the first burst was discovered in 2007.

The Murchison Widefield Array (MWA) is a low frequency radio telescope and is the first of four Square Kilometre Array (SKA) precursors to be completed. A consortium of partner institutions from seven countries (Australia, USA, India, New Zealand, Canada, Japan, and China) financed the development, construction, commissioning, and operations of the facility. The MWA consortium is led by Curtin University
Credit: ICRAR

“It’s really thrilling to have a clue about the origins of these incredible bursts of energy from outside our galaxy,” Dr Macquart said.

“The MWA adds an important piece of the puzzle and it was only made possible with this ‘technological tango’ between the two telescopes.

“It’s an exciting development because it unites the two teams and it brings home the advantage of having the two telescopes at the same site.

“Future coordination between the teams will also benefit other areas of astronomy, as complementary views from the two telescopes can provide a more complete picture of a situation.”
The MWA

The Murchison Widefield Array (MWA) is a low frequency radio telescope and is the first of four Square Kilometre Array (SKA) precursors to be completed.

A consortium of partner institutions from seven countries (Australia, USA, India, New Zealand, Canada, Japan, and China) financed the development, construction, commissioning, and operations of the facility. The MWA consortium is led by Curtin University.




Contacts and sources:
Dr Marcin Sokolowski / Kirsten Gottschalk / Lucien Wilkinson
International Centre for Radio Astronomy Research (ICRAR)

Citation: ‘No low-frequency emission from extremely bright Fast Radio Bursts’, published in Astrophysical Journal Letters on October 29th, 2018.      .



Naturally Occurring “Batteries” Fueled Organic Carbon Synthesis on Mars

Mars’ organic carbon may have originated from a series of electrochemical reactions between briny liquids and volcanic minerals, according to new analyses of three Martian meteorites from a team led by Carnegie’s Andrew Steele published in Science Advances.

The group’s analysis of a trio of Martian meteorites that fell to Earth—Tissint, Nakhla, and NWA 1950—showed that they contain an inventory of organic carbon that is remarkably consistent with the organic carbon compounds detected by the Mars Science Laboratory’s rover missions.

In 2012, Steele led a team that determined the organic carbon found in 10 Martian meteorites did indeed come from the Red Planet and was not due to contamination from Earth, but also that the organic carbon did not have a biological origin. This new work takes his research to the next step—trying to understand how Mars’ organic carbon was synthesized, if not by biology.

Organic molecules contain carbon and hydrogen, and sometimes include oxygen, nitrogen, sulfur, and other elements. Organic compounds are commonly associated with life, although they can be created by non-biological processes as well, which are referred to as abiotic organic chemistry. 

A high-resolution Transmission Electron Micrograph (scale 50nm) of a grain from a Martian meteorite. Reminiscent of a long dinner fork, the organic carbon layers are found between the intact "tines." This texture is created when the volcanic minerals of the Martian rock interact with a salty brine and become the anode and cathode of a naturally occurring battery in a corrosion reaction. This reaction would then have enough energy—under certain conditions—to synthesize organic carbon. 
Image courtesy of Andrew Steele.Top Image Caption: A mosaic of Mars created from more than 100 images taken by Viking Orbiters in the 1970s, courtesy of NASA. 

“Revealing the processes by which organic carbon compounds form on Mars has been a matter of tremendous interest for understanding its potential for habitability,” Steele said.

He and his co-authors took a deep dive into the minerology of these three Martian meteorites. Using advanced microscopy and spectroscopy, they were able to determine that the meteorites’ organic compounds were likely created by electrochemical corrosion of minerals in Martian rocks by a surrounding salty liquid brine.

“The discovery that natural systems can essentially form a small corrosion-powered battery that drives electrochemical reactions between minerals and surrounding liquid has major implications for the astrobiology field,” Steele explained.

Credit:  NASA/ Carnegie Institution for Science

A similar process could occur anywhere that igneous rocks are surrounded by brines, including the subsurface oceans of Jupiter’s moon Europa, Saturn’s moon Enceladus, and even some environments here on Earth, particularly early in this planets’ history.

The team included Carnegie’s Pamela Conrad and Jianhua Wang; Liane Benning, Richard Wirth, and Anja Schreiber of the German Research Centre for Geosciences; Sandra Siljeström of the RISE Research Institutes of Sweden; Marc Fries and Francis McCubbin of the NASA Johnson Space Center; Karyn Rogers of Rensselaer Polytechnic Institute; Jen Eigenbrode of NASA’s Goddard Space Flight Center; A. Needham of USRA–Science and Technology Institute; David Kilcoyne of Lawrence Berkeley National Laboratory; and Juan Diego Rodriguez Blanco of University of Leeds.

The paper is dedicated to the memory of Erik Hauri, a Carnegie scientist and co-author on the paper who died in September.

The researchers were supported by NASA, the Swedish National Space Board, the Swedish Research Council, the Helmholtz Recruiting Initiative, and the Department of Energy’s Office of Basic Energy Sciences.


Contacts and sources: 
Carnegie Institution for Science

Citation: Organic synthesis on Mars by electrochemical reduction of CO2.
A. Steele, L. G. Benning, R. Wirth, S. Siljeström, M. D. Fries, E. Hauri, P. G. Conrad, K. Rogers, J. Eigenbrode, A. Schreiber, A. Needham, J. H. Wang, F. M. McCubbin, D. Kilcoyne, Juan Diego Rodriguez Blanco. Science Advances, 2018; 4 (10): eaat5118 DOI: 10.1126/sciadv.aat5118  .


AI Systems Shed Light on Root Cause of Religious Conflict



Artificial intelligence can help us to better understand the causes of religious violence and to potentially control it, according to a new Oxford University collaboration. The study is one of the first to be published that uses psychologically realistic AI – as opposed to machine learning.


The research published in The Journal for Artificial Societies and Social Stimulation, combines computer modelling and cognitive psychology to create an AI system able to mimic human religiosity. An approach which allows for better understanding of the conditions, triggers and patterns for religious violence.

The study is built around the question of whether people are naturally violent, or if factors such as religion can cause xenophobic tension and anxiety between different groups, that may or may not lead to violence?

File:Religious figure - Flickr - Al Jazeera English.jpg
Credit: Al Jazeera English / Wikimedia Commons

The findings reveal that people are a peaceful species by nature. Even in times of crisis, such as natural disasters, people tend to bond and come together. However, in a wide range of contexts they are willing to endorse violence - particularly when others go against the core beliefs which define their identity.

Conducted by a cohort of researchers from universities including Oxford, Boston University and the University of Agder, Norway, the paper does not explicitly simulate violence, but, instead focuses on the conditions that enabled two specific periods of xenophobic social anxiety, that then escalated to extreme physical violence.

Justin Lane, a DPhil student in the Institute of Cognitive & Evolutionary Anthropology, who is a co-author on the work, and led the design of the model used and data collection, said: ‘Religious violence is not our default behaviour – in fact it is pretty rare in our history.’

Although the research focuses on specific historic events, the findings can be applied to any occurrence of religious violence, and used to understand the motivations behind it. Particularly events of radicalised Islam, when people’s patriotic identity conflicts with their religions one, e.g. the Boston bombing and London terror attacks. The team hope that the results can be used to support governments to address and prevent social conflict and terrorism.

The paper focuses on two cases of extreme violence, firstly, the conflict commonly referred to as the Northern Ireland Troubles, which is regarded as one of the most violent periods in Irish history. The conflict, involving the British army and various Republican and Loyalist paramilitary groups, spanned three decades, claimed the lives of approximately 3,500 people and saw a further 47,000 injured.

Although a much shorter period of tension, the 2002 Gujurat riots of India were equally devastating. The three-day period of inter-communal violence between the Hindu and Muslim communities in the western Indian state of Gujarat, began when a Sabarmarti Express train filled with Hindu pilgrims, stopped in the, predominantly Muslim town of Godhra, and ended with the deaths of more than 2,000 people.

Of the study’s use of psychologically realistic AI, Justin said: ‘99% of the general public are most familiar with AI that uses machine learning to automate human tasks like - classifying something, such as tweets to be positive or negative etc., but our study uses something called multi-agent AI to create a psychologically realistic model of a human, for example – how do they think, and particularly how do we identify with groups? Why would someone identify as Christian, Jewish or Muslim etc. Essentially how do our personal beliefs align with how a group defines itself?’

To create these psychologically realistic AI agents, the team use theories in cognitive psychology to mimic how a human being would naturally think and process information. This is not a new or radical approach – but it is the first time it has been applied physically in research. There is an entire body of theoretical literature that compares the human mind to a computer programme - but no one has taken this information and physically programmed it into a computer, it has just been an analogy. The team programmed these rules for cognitive interaction within their AI programme, to show how an individual’s beliefs match up with a group situation.

They did this by looking at how humans process information against their own personal experiences. Combining some AI models (mimicking people) that have had positive experiences with people from other faiths, and others that have had negative or neutral encounters. They did this to study the escalation and de-escalation of violence over time, and how it can, or cannot be managed.

To represent everyday society and how people of different faiths interact in the real world, they created a simulated environment and populated it with hundreds - or thousands (or millions), of the human model agents. The only difference being that these ‘people’ all have slightly different variables – age, ethnicity etc.

The simulated environments themselves have a basic design. Individuals have a space that they exist in, but within this space there is a certain probability that they will interact with environmental hazards, such as natural disasters and disease etc and at some point, each other.

The findings revealed that the most common conditions that enable long periods of mutually escalating xenophobic tension occur when social hazards, such as outgroup members who deny the group’s core beliefs or sacred values, overwhelm people to the point that they can no longer deal with them. It is only when people’s core belief systems are challenged, or they feel that their commitment to their own beliefs is questioned, that anxiety and agitations occur. However, this anxiety only led to violence in 20% of the scenarios created - all of which were triggered by people from either outside of the group, or within, going against the group’s core beliefs and identity.

Some religions have a tendency to encourage extreme displays of devotion to a chosen faith, and this can then take the form of violence against a group or individual of another faith, or someone who has broken away from the group.’

While other research has tried to use traditional AI and machine learning approaches to understand religious violence, they have delivered mixed results and issues regarding biases against minority communities in machine learning also raise ethical issues. The paper marks the first time that multi-agent AI has been used to tackle this question and create psychologically realistic computer models.

Justin said: ‘Ultimately, to use AI to study religion or culture, we have to look at modelling human psychology because our psychology is the foundation for religion and culture, so the root causes of things like religious violence rest in how our minds process the information that our world presents it.’

Understanding the root cause of religious violence allows people to use the model to both contain and minimise these conflicts, as well as increase them. However, used effectively, this research can be a positive tool that supports stable societies and community integration.

Off the back of this research, the team have recently secured funding for a new two-year project with the Center for Modeling Social Systems in Kristiansand, Norway. The work will help the Norwegian government to optimise the refugee integration process by studying demographic shifts related to immigration and integration in Europe such as the Roma in Slovakia, and the resettlement of Syrian refugees in Lesbos to Norway.


Contacts and sources:
Oxford University


Citation: A Generative Model of the Mutual Escalation of Anxiety Between Religious Groups.
LeRon Shultsa , Ross Goreb , Wesley J. Wildmanc , Christopher Lynchb , Justin E. Laned and Monica Toft. The Journal for Artificial Societies and Social Stimulation, 2018 DOI: 10.18564/jasss.3840   .


Discovery Changes Minds: Colored Bird Eggs Evolved from Dinosaurs

Assortment of paleognath and neognath bird eggs and a fossil theropod egg (on the right). 
Assortment of paleognath and neognath bird eggs and a fossil theropod egg
Image credit: Jasmina Wiemann/Yale University

A new study says the colors found in modern birds’ eggs did not evolve independently, as previously thought, but evolved instead from dinosaurs.Arrangement of colored oviraptor-like eggs in an oviraptorid nest arrangement.
 Image credit: Jasmina Wiemann

According to researchers at Yale, the American Museum of Natural History, and the University of Bonn, birds inherited their egg color from non-avian dinosaur ancestors that laid eggs in fully or partially open nests. The researchers’ findings appear Oct. 31 in the online edition of the journal Nature.

“This completely changes our understanding of how egg colors evolved,” said the study’s lead author, Yale paleontologist Jasmina Wiemann. “For two centuries, ornithologists assumed that egg color appeared in modern birds’ eggs multiple times, independently.”

The egg colors of birds reflect characteristic preferences in nesting environments and brooding behaviors. Modern birds use only two pigments, red and blue, to create all of the various egg colors, spots, and speckles.

Wiemann and her colleagues analyzed 18 fossil dinosaur eggshell samples from around the world, using non-destructive laser microspectroscopy to test for the presence of the two eggshell pigments. They found them in eggshells belonging to Eumaniraptoran dinosaurs, which include small, carnivorous dinosaurs such as Velociraptor.

“We infer that egg color co-evolved with open nesting habits in dinosaurs,” Wiemann said. “Once dinosaurs started to build open nests, exposure of the eggs to visually hunting predators and even nesting parasites favored the evolution of camouflaging egg colors, and individually recognizable patterns of spots and speckles.”

Illustration of a hatching Deinonychus chick from a blue egg with brown spots. Another brownish colored eggs can be seen in the background. The diversity recovered for dinosaur egg colors mirrors that found for modern bird eggs. 
Image credit: Jasmina Wiemann

Co-author Mark Norell, the Macaulay Curator of Paleontology at the American Museum of Natural History, noted that “Colored eggs have been considered a unique bird characteristic for over a century. Like feathers and wishbones, we now know that egg color evolved in their dinosaur predecessors long before birds appeared.”

The study’s other co-author is Tzu-Ruei Yang from the Steinmann Institute for Geology, Mineralogy, and Paleontology at the University of Bonn.

Fossil dinosaur eggshells for the study came from the Yale Peabody Museum of Natural History, the American Museum of Natural History, the National Paleowonders Museum in Taiwan, the Steinmann Institute for Geology, Paleontology and Mineralogy in Bonn, and the Zoological Research Museum Koenig in Bonn.

The research was supported by the Steven Cohen Award of the Society of Vertebrate Paleontology, the Macaulay Family Endowment, and the Division of Paleontology at the American Museum of Natural History.







Contacts and sources:
Jim Shelton
Yale University

Citation: Dinosaur egg colour had a single evolutionary origin.
Jasmina Wiemann, Tzu-Ruei Yang, Mark A. Norell. Nature, 2018; DOI: 10.1038/s41586-018-0646-5  .


Recreating First Life: Engineered Organisms Created Similar to What May Have Lived Billions Of Years Ago


Scripps Research scientists use the tools of synthetic biology to engineer organisms similar to those thought to have lived billions of years ago

Scientists at Scripps Research and their collaborators have created microorganisms that may recapitulate key features of organisms thought to have lived billions of years ago, allowing them to explore questions about how life evolved from inanimate molecules to single-celled organisms to the complex, multicellular lifeforms we see today.

By studying one of these engineered organisms—a bacterium whose genome consists of both ribonucleic acid (RNA) and deoxyribonucleic acid (DNA)—the scientists hope to shed light on the early evolution of genetic material, including the theorized transition from a world where most life relied solely on the genetic molecule RNA to one where DNA serves as the primary storehouse of genetic information.
Credit: Scripps Research

Using a second engineered organism, a genetically modified yeast containing an endosymbiotic bacterium, they hope to better understand the origins of cellular power plants called mitochondria. Mitochondria provide essential energy for the cells of eukaryotes, a broad group of organisms—including humans—that possesses complex, nucleus-containing cells.

The researchers report engineering the microbes in two papers, one published October 29, 2018 in the Proceedings of the National Academy of Sciences (PNAS) and another published August 30, 2018 in Journal of the American Chemical Society (JACS).

“These engineered organisms will allow us to probe two key theories about major milestones in the evolution of living organisms—the transition from the RNA world to the DNA world and the transition from prokaryotes to eukaryotes with mitochondria,” says Peter Schultz, PhD, senior author on the papers and president of Scripps Research. “Access to readily manipulated laboratory models enables us to seek answers to questions about early evolution that were previously intractable.”

The origins of life on Earth have been a human fascination for millennia. Scientists have traced the arc of life back several billion years and concluded that the simplest forms of life emerged from Earth’s primordial chemical soup and subsequently evolved over the eons into organisms of greater and greater complexity. A monumental leap came with the emergence of DNA, a molecule that stores all of the information required to replicate life and directs cellular machinery to do its bidding primarily by generating RNA, which in turn directs the synthesis of proteins, the molecular workhorses in cells.

In the 1960s, Carl Woese and Leslie Orgel, along with DNA pioneer Francis Crick, proposed that before DNA, organisms relied on RNA to carry genetic information, a molecule similar to but far less stable than DNA, that can also catalyze chemical reactions like proteins. “In science class, students learn that DNA leads to RNA which in turn leads to proteins—that’s a central dogma of biology—but the RNA world hypothesis turns that on its head,” says Angad Mehta, PhD, first author of the new papers and a postdoctoral research associate at Scripps Research. “For the RNA world hypothesis to be true, you have to somehow get from RNA to a DNA genome, yet how that might have happened is still a very big question among scientists.”

One possibility is that the transition proceeded through a kind of microbial missing link, a replicating organism that stored genetic information as RNA. For the JACS study, the Scripps Research-led team created Escherichia coli bacteria that partially build their DNA with ribonucleotides, the molecular building blocks typically used to build RNA. These engineered genomes contained up to 50 percent RNA, thus simultaneously representing a new type of synthetic organism and possibly a throwback to billions of years ago.

Mehta cautions that their work so far has focused on characterizing this chimeric RNA-DNA genome and its effect on bacterial growth and replication but hasn’t explicitly explored questions about the transition from the RNA world to the DNA world. But, he says, the fact that E. coli with half its genome comprised of RNA can survive and replicate is remarkable and seems to support the possibility of the existence of evolutionarily transitional organisms possessing hybrid RNA-DNA genomes. The Scripps Research team is now studying how the mixed genomes of their engineered E. coli function and plans to use the bacteria to explore a number of evolutionary questions.

For instance, one question is whether the presence of RNA leads to rapid genetic drift—large changes in gene sequence in a population over time. Scientists theorize that massive genetic drift occurred quickly during early evolution, and the presence in the genome of RNA could help explain how genetic change occurred so quickly.

In the paper published in PNAS, the researchers report engineering another laboratory model for an evolutionary milestone thought to have occurred more than 1.5 billion years ago. They created a yeast dependent for energy on bacteria living inside it as a beneficial parasite or “endosymbiont.” This composite organism will allow them to investigate the ancient origins of mitochondria—tiny, bacteria-like organelles that produce chemical energy within the cells of all higher organisms.

Mitochondria are widely thought to have evolved from ordinary bacteria that were captured by larger, single-celled organisms. They carry out several key functions in cells. Most importantly, they serve as oxygen reactors, using O2 to make cells’ basic unit of chemical energy, the molecule ATP. As crucial as mitochondria are to cells, their origins remain somewhat mysterious, although there are clear hints of descent from a more independent organism, widely assumed to have been a bacterium.

Mitochondria have a double-membrane structure like that of some bacteria, and—again, like bacteria—contain their own DNA. Analyses of the mitochondrial genome suggest that it shares an ancient ancestor with modern Rickettsia bacteria, which can live within the cells of their hosts and cause disease. Stronger support for the bacterial origin of mitochondria theory would come from experiments showing that independent bacteria could indeed be transformed, in an evolution-like progression, into mitochondria-like symbionts. To that end, the Scripps Research scientists engineered E. coli bacteria that could live in, depend upon, and provide key assistance to, cells of Saccharomyces cerevisiae, also known as baker’s yeast.

The researchers started by modifying E. coli to lack the gene encoding thiamin, making the bacteria dependent on the yeast cells for this essential vitamin. At the same time, they added to the bacteria a gene for ADP/ATP translocase, a transporter protein, so that ATP produced within the bacterial cells would be supplied to their yeast-cell hosts—mimicking the central function of real mitochondria. The team also modified the yeast so that their own mitochondria were deficient at supplying ATP. Thus the yeast would be dependent on the bacteria for normal, mitochondria-based ATP production.

The team found that some of the engineered bacteria, after being modified with surface proteins to protect them from being destroyed in the yeast, lived and proliferated in harmony with their hosts for more than 40 generations and appeared to be viable indefinitely. “The modified bacteria seem to accumulate new mutations within the yeast to better adapt to their new surroundings,” says Lubica Supekova, PhD, co-first author of the PNAS paper and a staff scientist at Scripps Research.

With this system established, the team will try to evolve the E. coli to become mitochondria-like organelles. For the new E. coli endosymbiont, adapting to life inside yeast could allow it an opportunity to radically slim its genome. A typical E. coli bacterium, for example, has several thousand genes, whereas mitochondria have evolved a stripped-down set of just 37.

The Scripps Research team rounded out the study with further gene-subtraction experiments, and the results were promising: they found they could eliminate not just the E. coli thiamin gene but also the genes underlying the production of the metabolic molecule NAD and the amino acid serine, and still get a viable symbiosis.

“We are now well on our way to showing that we can delete the genes for making all 20 amino acids, which comprise a significant part of the E. coli genome,” says Schultz. “Once we’ve achieved that, we’ll move on to deleting genes for the syntheses of cofactors and nucleotides, and within a few years we hope to be able to get a truly minimal endosymbiotic genome.”

The researchers also hope to use similar endosymbiont-host systems to investigate other important episodes in evolution, such as the origin of chloroplasts, light-absorbing organelles that have a mitochondria-like role in supplying energy to plants.

“Bacterial Genome Containing Chimeric DNA–RNA Sequences” was co-authored by Angad P. Mehta, Yiyang Wang, Sean A. Reed, Lubica Supekova, Tsotne Javahishvili, John C. Chaput and Peter G. Schultz, and was a collaboration between Scripps Research, Bay Area Innovation Center and the University of California, Irvine. The research reported in the JACS paper was supported by Calibr.

“Engineering yeast endosymbionts as a first step towards the evolution of mitochondria” was co-authored by Angad P. Mehta, Lubica Supekova, Jian-Hua Chen, Kersi Pestonjamasp, Paul Webster, Yeonjin Ko, Scott C. Henderson, Gerry McDermott, Frantisek Supek and Peter G. Schultz, and was a collaboration between Scripps Research, the University of California, San Francisco, Oak Crest Institute of Science, and the Genomics Institute of the Novartis Research Foundation. The research reported in the PNAS paper was supported by Calibr, the Department of Energy (DE-SC0011787, DE-AC02-5CH11231), the National Institutes of Health (P41GM103445) and the Chan Zuckerberg Initiative Human Cell Atlas program.



Contacts and sources: 
Scripps Research Institute


Citation: Bacterial Genome Containing Chimeric DNA–RNA Sequences.
Angad P. Mehta, Yiyang Wang, Sean A. Reed, Lubica Supekova, Tsotne Javahishvili, John C. Chaput, Peter G. Schultz. Journal of the American Chemical Society, 2018; 140 (36): 11464 DOI: 10.1021/jacs.8b07046


Engineering yeast endosymbionts as a step toward the evolution of mitochondria.
Angad P. Mehta, Lubica Supekova, Jian-Hua Chen, Kersi Pestonjamasp, Paul Webster, Yeonjin Ko, Scott C. Henderson, Gerry McDermott, Frantisek Supek, Peter G. Schultz. Proceedings of the National Academy of Sciences, 2018; 201813143 DOI: 10.1073/pnas.1813143115  .




Most Detailed Observations of Material Orbiting Close to a Black Hole

The central parts of our Galaxy, the Milky Way, as observed in the near-infrared with the NACO instrument on ESO's Very Large Telescope. By following the motions of the most central stars over more than 16 years, astronomers were able to determine the mass of the supermassive black hole that lurks there.
The centre of the Milky Way*
Credit: ESO/S. Gillessen et al.


ESO’s exquisitely sensitive GRAVITY instrument has added further evidence to the long-standing assumption that a supermassive black hole lurks in the centre of the Milky Way. New observations show clumps of gas swirling around at about 30% of the speed of light on a circular orbit just outside its event horizon — the first time material has been observed orbiting close to the point of no return, and the most detailed observations yet of material orbiting this close to a black hole.

This visualisation uses data from simulations of orbital motions of gas swirling around at about 30% of the speed of light on a circular orbit around the black hole.
Simulation of Material Orbiting close to a Black Hole
Credit:  ESO/Gravity Consortium/L. Calçada

ESO’s GRAVITY instrument on the Very Large Telescope (VLT) Interferometer has been used by scientists from a consortium of European institutions, including ESO [1], to observe flares of infrared radiation coming from the accretion discaround Sagittarius A*, the massive object at the heart of the Milky Way. The observed flares provide long-awaited confirmation that the object in the centre of our galaxy is, as has long been assumed, a supermassive black hole. The flares originate from material orbiting very close to the black hole’s event horizon — making these the most detailed observations yet of material orbiting this close to a black hole.

GRAVITY instrument has added further evidence to the long-standing assumption that a supermassive black hole lurks in the centre of the Milky Way.
Credit: ESO

While some matter in the accretion disc — the belt of gas orbiting Sagittarius A* at relativistic speeds [2] — can orbit the black hole safely, anything that gets too close is doomed to be pulled beyond the event horizon. The closest point to a black hole that material can orbit without being irresistibly drawn inwards by the immense mass is known as the innermost stable orbit, and it is from here that the observed flares originate.

Wide-field view of the center of the Milky Way: This visible light wide-field view shows the rich star clouds in the constellation of Sagittarius (the Archer) in the direction of the centre of our Milky Way galaxy. The entire image is filled with vast numbers of stars — but far more remain hidden behind clouds of dust and are only revealed in infrared images. This view was created from photographs in red and blue light and forming part of the Digitized Sky Survey 2. The field of view is approximately 3.5 degrees x 3.6 degrees.
Wide-field view of the centre of the Milky Way
Credit: ESO and Digitized Sky Survey 2. Acknowledgment: Davide De Martin and S. Guisard (www.eso.org/~sguisard)

"It’s mind-boggling to actually witness material orbiting a massive black hole at 30% of the speed of light," marvelled Oliver Pfuhl, a scientist at the MPE. "GRAVITY’s tremendous sensitivity has allowed us to observe the accretion processes in real time in unprecedented detail."

These measurements were only possible thanks to international collaboration and state-of-the-art instrumentation [3]. The GRAVITY instrument which made this work possible combines the light from four telescopes of ESO’s VLT to create a virtual super-telescope 130 metres in diameter, and has already been used to probe the nature of Sagittarius A*.

Earlier this year, GRAVITY and SINFONI, another instrument on the VLT, allowed the same team to accurately measure the close fly-by of the star S2 as it passed through the extreme gravitational field near Sagittarius A*, and for the first time revealed the effects predicted by Einstein’s general relativity in such an extreme environment. During S2’s close fly-by, strong infrared emission was also observed.


This simulation shows the orbits of a tight group of stars close to the supermassive blackhole at the heart of the Milky Way. During 2018 one of these stars, S2, passed very close to the black hole and was the subject of intense scrutiny with ESO telescope. Its behaviour matched the predictions of Einsteins's general relativity and was inconsistent with simpler Newtonian gravity.

Credit:  ESO/L. Calçada/spaceengine.org


"We were closely monitoring S2, and of course we always keep an eye on Sagittarius A*," explained Pfuhl. "During our observations, we were lucky enough to notice three bright flares from around the black hole — it was a lucky coincidence!"

This emission, from highly energetic electrons very close to the black hole, was visible as three prominent bright flares, and exactly matches theoretical predictions for hot spots orbiting close to a black hole of four million solar masses [4]. The flares are thought to originate from magnetic interactions in the very hot gas orbiting very close to Sagittarius A*.

This visualization uses data from simulations of orbital motions of gas swirling around at about 30% of the speed of light on a circular orbit around the supermassive black hole Sagittarius A*.

Credit:ESO/Gravity Consortium/L. Calçada

Reinhard Genzel, of the Max Planck Institute for Extraterrestrial Physics (MPE) in Garching, Germany, who led the study, explained: "This always was one of our dream projects but we did not dare to hope that it would become possible so soon." Referring to the long-standing assumption that Sagittarius A* is a supermassive black hole, Genzel concluded that "the result is a resounding confirmation of the massive black hole paradigm."
Notes

[1] This research was undertaken by scientists from the Max Planck Institute for Extraterrestrial Physics (MPE), the Observatoire de Paris, the Université Grenoble Alpes, CNRS, the Max Planck Institute for Astronomy, the University of Cologne, the Portuguese CENTRA – Centro de Astrofisica e Gravitação and ESO.

[2] Relativistic speeds are those which are so great that the effects of Einstein’s Theory of Relativity become significant. In the case of the accretion disc around Sagittarius A*, the gas is moving at roughly 30% of the speed of light.

[3] GRAVITY was developed by a collaboration consisting of the Max Planck Institute for Extraterrestrial Physics (Germany), LESIA of Paris Observatory–PSL/CNRS/Sorbonne Université/Univ. Paris Diderot and IPAG of Université Grenoble Alpes/CNRS (France), the Max Planck Institute for Astronomy (Germany), the University of Cologne (Germany), the CENTRA–Centro de Astrofísica e Gravitação (Portugal) and ESO.

[4] The solar mass is a unit used in astronomy. It is equal to the mass of our closest star, the Sun, and has a value of 1.989 × 1030 kg. This means that Sgr A* has a mass 1.3 trillion times greater than the Earth.
More information

This research was presented in a paper entitled "Detection of Orbital Motions Near the Last Stable Circular Orbit of the Massive Black Hole SgrA*", by the GRAVITY Collaboration, published in the journal Astronomy & Astrophysics on 31 October 2018. Research paper

The GRAVITY Collaboration team is composed of: R. Abuter (ESO, Garching, Germany), A. Amorim (Universidade de Lisboa, Lisbon, Portugal), M. Bauböck (Max Planck Institute for Extraterrestrial Physics, Garching, Germany [MPE]), J.P. Berger (Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France [IPAG]; ESO, Garching, Germany), H. Bonnet (ESO, Garching, Germany), W. Brandner (Max Planck Institute for Astronomy, Heidelberg, Germany [MPIA]), Y. Clénet (LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Meudon, France [LESIA])), V. Coudé du Foresto (LESIA), P. T. de Zeeuw (Sterrewacht Leiden, Leiden University, Leiden, The Netherlands; MPE), C. Deen (MPE), J. Dexter (MPE), G. Duvert (IPAG), A. Eckart (University of Cologne, Cologne, Germany; Max Planck Institute for Radio Astronomy, Bonn, Germany), F. Eisenhauer (MPE), N.M. Förster Schreiber (MPE), P. Garcia (Universidade do Porto, Porto, Portugal; Universidade de Lisboa Lisboa, Portugal), F. Gao (MPE), E. Gendron (LESIA), R. Genzel (MPE; University of California, Berkeley, California, USA), S. Gillessen (MPE), P. Guajardo (ESO, Santiago, Chile), M. Habibi (MPE), X. Haubois (ESO, Santiago, Chile), Th. Henning (MPIA), S. Hippler (MPIA), M. Horrobin (University of Cologne, Cologne, Germany), A. Huber (MPIA), A. Jimenez Rosales (MPE), L. Jocou (IPAG), P. Kervella (LESIA; MPIA), S. Lacour (LESIA), V. Lapeyrère (LESIA), B. Lazareff (IPAG), J.-B. Le Bouquin (IPAG), P. Léna (LESIA), M. Lippa (MPE), T. Ott (MPE), J. Panduro (MPIA), T. Paumard (LESIA), K. Perraut (IPAG), G. Perrin (LESIA), O. Pfuhl (MPE), P.M. Plewa (MPE), S. Rabien (MPE), G. Rodríguez-Coira (LESIA), G. Rousset (LESIA), A. Sternberg (School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel, Center for Computational Astrophysics, Flatiron Institute, New York, USA), O. Straub (LESIA), C. Straubmeier (University of Cologne, Cologne, Germany), E. Sturm (MPE), L.J. Tacconi (MPE), F. Vincent (LESIA), S. von Fellenberg (MPE), I. Waisberg (MPE), F. Widmann (MPE), E. Wieprecht (MPE), E. Wiezorrek (MPE), J. Woillez (ESO, Garching, Germany), S. Yazici (MPE; University of Cologne, Cologne, Germany).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It has 16 Member States: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile and with Australia as a Strategic Partner. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its world-leading Very Large Telescope Interferometer as well as two survey telescopes, VISTA working in the infrared and the visible-light VLT Survey Telescope. ESO is also a major partner in two facilities on Chajnantor, APEX and ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre Extremely Large Telescope, the ELT, which will become "the world’s biggest eye on the sky".


Contacts and sources:
Oliver Pfuhl,  Max Planck Institute for Extraterrestrial Physics
Jason Dexter, Max Planck Institute for Extraterrestrial Physics
Thibaut Paumard. CNRS Researcher. Observatoire de Paris, France
Xavier Haubois, ESO Astronomer
IR Group Secretariat, Max Planck Institute for Extraterrestrial Physics
Hannelore Hämmerle, Max Planck Institute for Extraterrestrial Physics
Calum Turner,ESO


Citation: Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA*
R. Abuter, A. Amorim, M. Bauböck, J. P. Berger, H. Bonnet, W. Brandner, Y. Clénet, V. Coudé du Foresto, P. T. de Zeeuw, C. Deen, J. Dexter, G. Duvert, A. Eckart, F. Eisenhauer, N. M. Förster Schreiber, P. Garcia, F. Gao, E. Gendron, R. Genzel, S. Gillessen, P. Guajardo, M. Habibi, X. Haubois, Th. Henning, S. Hippler, M. Horrobin, A. Huber, A. Jiménez-Rosales, L. Jocou, P. Kervella, S. Lacour, V. Lapeyrère, B. Lazareff, J.-B. Le Bouquin, P. Léna, M. Lippa, T. Ott, J. Panduro, T. Paumard, K. Perraut, G. Perrin, O. Pfuhl, P. M. Plewa, S. Rabien, G. Rodríguez-Coira, G. Rousset, A. Sternberg, O. Straub, C. Straubmeier, E. Sturm, L. J. Tacconi, F. Vincent, S. von Fellenberg, I. Waisberg, F. Widmann, E. Wieprecht, E. Wiezorrek, J. Woillez, S. Yazici. . Astronomy & Astrophysics, 2018; 618: L10 DOI: 10.1051/0004-6361/201834294

.

Giant That Shaped the Early Days of the Milky Way Discovered

Professor Amina Helmi reveals the secrets of our star system.

Some ten billion years ago, the Milky Way merged with a large galaxy. The stars from this partner, named Gaia-Enceladus, make up most of the Milky Way’s halo and also shaped its thick disk, giving it its inflated form. A description of this mega-merger, discovered by an international team led by University of Groningen astronomer Amina Helmi, is now published in the scientific journal Nature.

Large galaxies like our Milky Way are the result of mergers of smaller galaxies. An outstanding question is whether a galaxy like the Milky Way is the product of many small mergers or of a few large ones. The University of Groningen’s Professor of Astronomy, Amina Helmi, has spent most of her career looking for ‘fossils’ in our Milky Way which might offer some hints as to its evolution. She uses the chemical composition, the position and the trajectory of stars in the halo to deduce their history and thereby to identify the mergers which created the early Milky Way.

Amina Helmi,

Credit: University of Groningen

Simulation of the merger

composition.

Credits: H.H. Koppelman, A. Villalobos, A. Helmi (University of Groningen)


Gaia's second data release

The recent second data release from the Gaia satellite mission last April provided Professor Helmi with data on around 1.7 billion stars. Helmi has been involved in the development of the Gaia mission for some twenty years and was part of the data validation team on the second data release. She has now used the data to look for traces of mergers in the halo: “We expected stars from fused satellites in the halo. What we didn’t expect to find was that most halo stars actually have a shared origin in one very large merger”.
Thick disk

This is indeed what she found. The chemical signature of many halo stars was clearly different from the ‘native’ Milky Way stars. “And they are a fairly homogenous group, which indicates they share a common origin”. By plotting both trajectory and chemical signature, the ‘invaders’ stood out clearly. Helmi: “The youngest stars from Gaia-Enceladus are actually younger than the native Milky Way stars in what is now the thick disk region. This means that the progenitor of this thick disk was already present when the fusion happened, and Gaia-Enceladus, because of its large size, shook it and puffed it up.”

Artistic rendering of Enceladus being devoured by a Milky Way-like galaxy 
 Credit: René van der Woude, Mixr.nl

In a previous paper, Helmi had already described a huge ‘blob’ of stars sharing a common origin1. Now, she shows that stars from this blob in the halo are the debris from the merging of the Milky Way with a galaxy which was slightly more massive than the Small Magellanic Cloud, some ten billion years ago. The galaxy is called Gaia-Enceladus, after the Giant Enceladus who in Greek mythology was born of Gaia (the Earth goddess) and Uranus (the Sky god).

The data on kinematics, chemistry, age and spatial distribution from the native Milky Way stars and the remnants of Gaia-Enceladus reminded Helmi of simulations performed by a former PhD student, some ten years ago. His simulations of the merging of a large disc-shaped galaxy with the young Milky Way produced a distribution of stars from both objects, which is totally in line with the Gaia data. “It was amazing to look at the new Gaia data and realize that I had seen it before!,” says the astronomer.

Computer simulation of the merger between a galaxy like the young Milky Way, whose stars are shown in cyan, and a smaller galaxy, indicated in red. According to a study based on the second data release of ESA's Gaia mission, astronomers estimate that a significant merging event like the one shown in this animation has occurred during the Milky Way's early formation stages, ten billion years ago. Such a merger has led to two important components of our Galaxy, the halo and the thick disc. Stars belonging to the accreted galaxy, which has been named Gaia-Enceladus, are interspersed with the Milky Way stars and can be seen across the entire sky, but could only be revealed thanks to Gaia's extraordinary precision.
Credit: ESA Science & Technology


The movie shows an N-body simulation of the merger of a Milky Way-like galaxy (with its stars in blue) and a smaller disky galaxy resembling the Small Magellanic Cloud in mass (with it stars in red). At the beginning the two galaxies are clearly separated, but gravity pulls them together and this leads to the full accretion of the smaller one. Distinguishing the accreted stars from the rest is not easy by the final stage, but it is possible using the motions of the stars and their chemical  https://www.astro.rug.nl/~ahelmi/Villalobos-i60-final-v1.mp4




Contacts and sources: 
University of Groningen

Citation: . The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk
Amina Helmi, Carine Babusiaux, Helmer H. Koppelman, Davide Massari, Jovan Veljanoski, Anthony G. A. Brown. Nature, 2018; 563 (7729): 85 DOI: 10.1038/s41586-018-0625-x    .


Earliest Evidence For Hominins in ‘Green Arabia’ between 500,000 and 300,000 Years Ago




New study provides earliest evidence for hominins in ‘Green Arabia’ between 500,000 and 300,000 years ago alongside direct environmental data indicating productive, relatively humid grasslands

A new study, led by scientists from the Max Planck Institute for the Science of Human History and published in Nature Ecology and Evolution, suggests that early hominin dispersals beyond Africa did not involve adaptations to environmental extremes, such as to arid and harsh deserts.

The discovery of stone tools and cut-marks on fossil animal remains at the site of Ti's al Ghadah provides definitive evidence for hominins in Saudi Arabia at least 100,000 years earlier than previously known. Stable isotope analysis of the fossil fauna indicates a dominance of grassland vegetation, with aridity levels similar to those found in open savanna settings in eastern Africa today. The stable isotope data indicates that early dispersals of our archaic ancestors were part of a range expansion rather than a result of novel adaptations to new environmental contexts outside Africa.

Mammal fossil recovered from the Ti’s al Ghadah site, Saudi Arabia
Credit: © Palaeodeserts Project (Ian R. Cartwright)

Studies of early and late dispersals of hominin populations beyond Africa are important for understanding the course of global human evolution and what it means to be human. Although the species that make up the genus Homo are often termed ‘human’ in academic and public discourse, this evolutionary group (or genus), which emerged in Africa around 3 million years ago, is highly diverse. Indeed, there is continuing debate as to what extent our own species Homo sapiens, which emerged in Africa around 300,000 years ago, showed unique ecological plasticity in adapting to novel environments compared to other hominin members in the genus Homo.

Distinguishing ecological settings for members of the genus Homo outside Africa

It has recently been argued that early Homo sapiens occupied a diversity of extreme environments, including deserts, tropical rainforests, arctic, and high-altitude settings, around the world. By contrast, the dispersals of other earlier and contemporaneous species of Homo, such as Neanderthals, appear to be associated with generalized use of different forest and grassland mosaics in and among river and lake settings. A lack of palaeoenvironmental information has made it difficult to systematically test this idea and indeed a number of researchers maintain that non-Homo sapiens species demonstrate cultural and ecological adaptive flexibility.

"Green Arabia" and early human migrations

In spite of its crucial geographic position at the crossroads between Africa and Eurasia, the Arabian Peninsula has been astoundingly absent from discussions about early human expansions until recently. However, recent analysis of climate models, cave records, lake records, and animal fossils have shown that at certain points in the past, the harsh, hyper-arid deserts that cover much of Arabia today were replaced by ‘greener’ conditions that would have represented an attractive setting for various hominin populations.

Excavation of mammal fossils at the Ti’s al Ghadah site, Saudi Arabia

Credit: © Palaeodeserts Project (Michael Petraglia)



Following the ‘savanna’? Direct environmental evidence for first steps ‘Out of Africa’

In the current paper, the researchers undertook renewed archaeological excavations and analysis of fossil fauna found at the site of Ti’s al Ghadah, in the Nefud Desert of northern Saudi Arabia. As one of the lead authors, Mathew Stewart says, “Ti’s al Ghadah is one of the most important palaeontological sites in the Arabian Peninsula and it currently represents the only dated collection of middle Pleistocene fossil animals in this part of the world, and includes animals such as elephant, jaguar and water birds.” Until now, however, the absence of stone tools has made linking these animals with early hominin presence uncertain.

Significantly, the research team found stone tools alongside evidence for the butchery of animals on bones, confirming a hominin presence in association with these animals 500,000 to 300,000 years ago. Michael Petraglia, the principal archaeologist of the project and a co-author on the paper says, “This makes Ti's al Ghadah the first, early hominin-associated fossil assemblage from the Arabian Peninsula, demonstrating that our ancestors were exploiting a variety of animals as they wandered into the green interior.”

The authors were also able to innovatively apply geochemical methods to fossil animal tooth enamel to determine vegetation and aridity conditions associated with the movements of our ancestors into this region. The stable isotope findings highlight the presence of an abundance of grass in all animal diets, as well aridity levels somewhat similar to those found in East Africa ‘savanna’ settings today. This information fits with analysis of the types of animals found on site, and indicates the availability of significant amounts of water at certain points in time.

Implications for our understanding of changing human adaptive capacities

“While these early hominin populations may have possessed significant cultural capacities, their movement into this part of the world would not have required adaptations to harsh and arid deserts,” Dr. Patrick Roberts, the lead author of the paper, explains. “Indeed, the isotope evidence suggests that this expansion is more characteristic of a range expansion similar to that seen among other mammals moving between Africa, the Levant, and Eurasia at this time.” More detailed study of past environments, closely associated with different forms of hominin species in the Arabian Peninsula and elsewhere should enable more refined testing as to whether our species is uniquely flexible in terms of its adaptations to varying environments.

The international consortium of researchers involved in this project is headed by the Max Planck Institute for the Science of Human History, in partnership with HRH Prince Sultan bin Salman and the Saudi Commission for Tourism and National Heritage. Additional partners include the Saudi Geological Survey, King Saud University and other key institutions in the United Kingdom and Australia.





Contacts and sources: 
Patrick Roberts
Max Planck Institute for the Science of Human History


Citation: Fossil herbivore stable isotopes reveal middle Pleistocene hominin palaeoenvironment in ‘Green Arabia’
Patrick Roberts, Mathew Stewart, Abdulaziz N. Alagaili, Paul Breeze, Ian Candy, Nick Drake, Huw S. Groucutt, Eleanor M. L. Scerri, Julia Lee-Thorp, Julien Louys, Iyad S. Zalmout, Yahya S. A. Al-Mufarreh, Jana Zech, Abdullah M. Alsharekh, Abdulaziz al Omari, Nicole Boivin, Michael Petraglia.. Nature Ecology & Evolution, 2018; DOI: 10.1038/s41559-018-0698-9
    .


How the World’s Fastest Muscle Created Four Unique Bird Species

When the male bearded manakin snaps its wings at lightning speed, it’s more than part of an elaborate, acrobatic mating ritual. The tiny muscle doing the heavy lifting is also the reason this exotic bird has evolved into four distinct species, according to new research published in the journal eLIFE by Wake Forest University biologist Matthew Fuxjager.

Fuxjager’s previous research showed that the tiny bearded manakin, which measures a little more than four inches long and weighs about half an ounce, has one of the fastest limb muscles of any vertebrate. During an elaborate courtship dance, it uses this muscle – the scapulohumeralis caudalis – to make a unique “roll-snap” movement at speeds so fast it’s undetectable to the human eye. The roll-snap creates a mechanical popping sound when the wings connect above the back, all to catch the female’s attention.



Credit: Wake Forest University

“The ability of this muscle to develop different speeds has shaped the way these manakins have evolved – allowed for one species to become two, and two to become four. This is some of the first work that shows how this happens.”Matthew Fuxjager, one of the world’s few experts on manakin physiology


Fuxjager’s new study, “Physiological constraint on acrobatic courtship behavior underlies rapid sympatric speciation in bearded manakins,” is funded by the National Science Foundation. The research team includes Wake Forest doctoral student Meredith Miles.

Matthew Fuxjager

Credit: Wake Forest University

Fuxjager, assistant professor of biology at Wake Forest and the study’s principal investigator, looks at how the manakins shared a common ancestor 300,000 years ago, but then quickly split into four species: white-bearded manakins to golden-collared manakins, and then to white-collared and orange-collared manakins. The core goal of all his research is to understand how and why animals produce remarkable behaviors.

This study does something that others rarely if ever do: It examines not only how a small group of animals evolved, but also how they behave overall and how a specific muscle in these organisms performs. This three-pronged approach showed the researchers how muscle speed and performance influenced the split into four species.


Fuxjager traveled to Panama and Costa Rica to measure how fast the manakin’s scapulohumeralis caudalis expands and contracts when stimulated, and compared recordings of the manakin roll-snap sound display to note variations in speed and duration among species. The patterns show changes in physiology led to changes in behavior – and then the evolution of four manakin species.


Credit: Wake Forest University


The study of superfast muscles such as the bearded manakin’s scapulohumeralis caudalis may inform research into how diseases such as ALS attack muscles in humans, Fuxjager said.

“Humans are interested in motor control and muscle performance – what makes a muscle fast, what makes it strong, and what might make it both fast and strong,” he said. “Understanding how the super-performing muscle in this bird works could lead us to a better understanding of muscle diseases and how to treat them.”







Contacts and sources:
by Katie Neal & Alicia Roberts
Wake Forest University

Citation: Physiological constraint on acrobatic courtship behavior underlies rapid sympatric speciation in bearded manakins.
Meredith C Miles, Franz Goller, Matthew J Fuxjager. eLife, 2018; 7 DOI: 10.7554/eLife.40630   .


Tuesday, October 30, 2018

Astronomers Witness Slow Death of Nearby Galaxy



Astronomers from The Australian National University (ANU) and CSIRO have witnessed, in the finest detail ever, the slow death of a neighboring dwarf galaxy, which is gradually losing its power to form stars.

The new peer-reviewed study of the Small Magellanic Cloud (SMC), which is a tiny fraction of the size and mass of the Milky Way galaxy, uses images taken with CSIRO's powerful Australian SKA Pathfinder (ASKAP) radio telescope.

Lead researcher Professor Naomi McClure-Griffiths from ANU said the features of the radio images were more than three times finer than previous SMC images, which allowed the team to probe the interactions between the small galaxy and its environment with more accuracy.

Credit: CSIR0

"We were able to observe a powerful outflow of hydrogen gas from the Small Magellanic Cloud," said Professor McClure-Griffiths from the Research School of Astronomy and Astrophysics at ANU.

"The implication is the galaxy may eventually stop being able to form new stars if it loses all of its gas. Galaxies that stop forming stars gradually fade away into oblivion. It's sort of a slow death for a galaxy if it loses all of its gas."

Professor McClure-Griffiths said the discovery, which is part of a project that investigates the evolution of galaxies, provided the first clear observational measurement of the amount of mass lost from a dwarf galaxy.

"The result is also important because it provides a possible source of gas for the enormous Magellanic Stream that encircles the Milky Way," she said.

"Ultimately, the Small Magellanic Cloud is likely to eventually be gobbled up by our Milky Way."

CSIRO co-researcher Dr David McConnell said ASKAP was unrivalled in the world for this kind of research due to its unique radio receivers that give it a panoramic view of the sky.

"The telescope covered the entire SMC galaxy in a single shot and photographed its hydrogen gas with unprecedented detail," he said.

Hydrogen is the most abundant element in the Universe, and is the main ingredient of stars.

"ASKAP will go on to make state-of-the-art pictures of hydrogen gas in our own Milky Way and the Magellanic Clouds, providing a full understanding of how this dwarf system is merging with our own galaxy and what this teaches us about the evolution of other galaxies," Dr McConnell said.




Contacts and sources:
Naomi McClure-Griffiths
The Australian National University (ANU)
     .




Gunshot Wounds in Children Account For $270 Million in Emergency Room and Inpatient Charges Annually

A new Johns Hopkins study of more than 75,000 teenagers and children who suffered a firearm-related injury between 2006 and 2014 pinpoints the financial burden of gunshot wounds and highlights the increasing incidence of injury in certain age groups.

In light of recent school shootings such as the February 2018 mass shooting at the Marjory Stoneman Douglas High School in Florida, which killed 17 students and teachers and wounded 17 more, the researchers point to an urgent need to understand trends in firearm-related injuries among the youth population.

“While mass shootings garner significant media and social attention, unfortunately they’re not a good reflection of the actual burden of firearm-related injuries. In our study, we found that for every 100,000 teenagers and children arriving to the emergency department, 11 come for a gun-related injury. In other words, this represents over 8,300 children and teenagers each year who come to the emergency department to be treated for a gunshot wound,” says Faiz Gani, M.D., a research fellow in the Johns Hopkins Surgery Center for Outcomes Research and one of the report’s authors.

Credit: iStock

A report of the analysis will be published in JAMA Pediatrics on Oct. 29, 2018.-payer emergency department (ED) database, the researchers analyzed data from a nationally representative sample of 75,086 people younger than age 18 in the U.S. who arrived alive at an ED with a firearm-related injury.

Approximately 86 percent of patients in the study group were male with an average age of 15. Throughout the study period, males were five times more likely to visit the ED for a firearm-related injury than females, and males ages 15–17 saw the highest incidence, with 85.9 ED visits per 100,000 people. The most common reasons for injury included assault (49 percent), unintentional injuries (38.7 percent) and suicides (2 percent). Overall, 6 percent of these teenagers and children died in the ED or as an inpatient after their injury.

The average ED and inpatient charges were $2,445 and $44,966 per visit, respectively, resulting in approximately $270 million in annual firearm-related injury charges.

“Our study not only highlights the substantial clinical burden and loss of life associated with gunshot wounds, but also reiterates the large economic and financial consequences of these injuries to patients and their families,” said Gani. “Unfortunately, these numbers are likely the tip of the iceberg as we were unable to account for subsequent costs for long-term therapy / rehabilitation or expenses associated with lost work for the parents. As a system we need to do much better and can only improve if we focus our efforts to understand these injuries and develop policies that prevent these injuries to our children.”






Contacts and sources:
Johns Hopkins Medicine


Citation: Trends in the Incidence of and Charges Associated With Firearm-Related Injuries Among Pediatric Patients, 2006-2014
Faiz Gani, Joseph K. Canner. . JAMA Pediatrics, 2018; DOI: 10.1001/jamapediatrics.2018.3091  .


Mind’s Quality Control Center: Cerebellum Checks and Corrects Thoughts, Movement



The cerebellum, once thought to be limited to controlling movement, is involved in every aspect of higher brain function, according to a new study by researchers at Washington University School of Medicine in St. Louis.

The cerebellum can’t get no respect. Located inconveniently on the underside of the brain and initially thought to be limited to controlling movement, the cerebellum has long been treated like an afterthought by researchers studying higher brain functions.

Credit: Washington University School of Medicine in St. Louis.

But researchers at Washington University School of Medicine in St. Louis say overlooking the cerebellum is a mistake. Their findings, published Oct. 25 in Neuron, suggest that the cerebellum has a hand in every aspect of higher brain functions — not just movement, but attention, thinking, planning and decision-making.

“The biggest surprise to me was the discovery that 80 percent of the cerebellum is devoted to the smart stuff,” said senior author Nico Dosenbach, MD, PhD, an assistant professor of neurology, of occupational therapy and of pediatrics. “Everyone thought the cerebellum was about movement. If your cerebellum is damaged, you can’t move smoothly ­— your hand jerks around when you try to reach for something. Our research strongly suggests that just as the cerebellum serves as a quality check on movement, it also checks your thoughts as well — smoothing them out, correcting them, perfecting things.”

Dosenbach is a founding member of the Midnight Scan Club, a group of Washington University neuroscientists who have taken turns in an MRI scanner late at night, scanning their own brains for hours to generate a massive amount of high-quality data for their research. A previous analysis of Midnight Scan Club data showed that a kind of brain scan called functional connectivity MRI can reliably detect fundamental differences in how individual brains are wired.

Postdoctoral researcher and first author Scott Marek, PhD, decided to apply a similar analysis to the cerebellum. In the better-known cerebral cortex — the crumpled outer layer of the brain — wiring maps have been drawn that connect distant areas into networks that govern vision, attention, language and movement. But nobody knew how the cerebellum is organized in individuals, partly because a quirk of MRI technology means that data obtained from the underside of the brain tend to be low quality. In the Midnight Scan Club dataset, however, Marek had access to more than 10 hours of scans on each of 10 people, enough to take a serious look at the cerebellum.

Using the cortex’s networks as a template, Marek could identify the networks in the cerebellum. Notably, the sensory networks are missing — vision, hearing and touch — and only 20 percent of the cerebellum is devoted to movement, roughly the same amount as in the cerebral cortex. The remaining 80 percent is occupied by networks involved in higher-order cognition: the attention network; the default network, which has to do with daydreaming, recalling memories and just idly thinking; and two networks that oversee executive functions such as decision-making and planning.

“The executive function networks are way overrepresented in the cerebellum,” Marek said. “Our whole understanding of the cerebellum needs to shift away from it being involved in motor control to it being more involved in general control of higher-level cognition.”

The researchers measured the timing of brain activity and found that the cerebellum was consistently the last step in neurologic circuits. Signals were received through sensory systems and processed in intermediate networks in the cerebral cortex before being sent to the cerebellum. There, the researchers surmise, the signals undergo final quality checks before the output is sent back to the cerebral cortex for implementation.

“If you think of an assembly line, the cerebellum is the person at the end who inspects the car and says, ‘This one is good; we’ll sell it,’ or ‘This one has a dent; we have to go back and repair it,’” Dosenbach said. “It’s where all your thoughts and actions get refined and quality controlled.”

People with damage to their cerebellum are known to become uncoordinated, with an unsteady gait, slurred speech and difficulty with fine motor tasks such as eating. The cerebellum also is quite sensitive to alcohol, which is one of the reasons why people who have had too many drinks stumble around. But the new data may help explain why someone who is inebriated also shows poor judgment. Just as a person staggers drunkenly because his or her compromised cerebellum is unable to perform the customary quality checks on motor function, alcohol-fueled bad decisions might also reflect a breakdown of quality control over executive functions.

Marek also performed individualized network analyses on the 10 people in the data set. He found that while brain functions are arranged in roughly the same pattern in everyone’s cerebellum, there is enough individual variation to distinguish brain scans performed on any two participants. The researchers are now investigating whether such individual differences in cerebellar networks correlate with intelligence, behavior, personality traits such as adaptability, or psychiatric conditions.

“Many people who are looking at links between brain function and behavior just ignore the cerebellum,” Dosenbach said. “They slice off that data and throw it away, because they don’t know what to do with it. But there are four times as many neurons in the cerebellum as in the cerebral cortex, so if you’re leaving out the cerebellum, you’ve already shot yourself in the foot before you started. The promise of imaging the whole human brain at once is to understand how it all works together. You can’t see how the whole circuit works together when you’re missing a major piece of it.”





Contacts and sources: 
Tamara Bhandari
Washington University School of Medicine



Citation: Spatial and Temporal Organization of the Individual Human Cerebellum
Scott Marek, Joshua S. Siegel, Evan M. Gordon, Ryan V. Raut, Caterina Gratton, Dillan J. Newbold, Mario Ortega, Timothy O. Laumann, Babatunde Adeyemo, Derek B. Miller, Annie Zheng, Katherine C. Lopez, Jeffrey J. Berg, Rebecca S. Coalson, Annie L. Nguyen, Donna Dierker, Andrew N. Van, Catherine R. Hoyt, Kathleen B. McDermott, Scott A. Norris, Joshua S. Shimony, Abraham Z. Snyder, Steven M. Nelson, Deanna M. Barch, Bradley L. Schlaggar, Marcus E. Raichle, Steven E. Petersen, Deanna J. Greene, Nico U.F. Dosenbach. . Neuron, 2018; DOI: 10.1016/j.neuron.2018.10.010     .




Obese Mice Lose a Third of Their Fat Using a Natural Protein



To the great surprise of cancer researchers, a protein they investigated for its possible role in cancer turned out to be a powerful regulator of metabolism. The Georgetown University-led study found that forced expression of this protein in a laboratory strain of obese mice showed a remarkable reduction of their fat mass despite a genetic predisposition to eat all the time.

The study, published in Scientific Reports, suggests that the protein FGFBP3 (BP3 for short) might offer novel therapy to reverse disorders associated with metabolic syndrome, such as type 2 diabetes and fatty liver disease.

Because BP3 is a natural protein and not an artificial drug, clinical trials of recombinant human BP3 could begin after a final round of preclinical studies, investigators say.

“We found that eight BP3 treatments over 18 days was enough to reduce the fat in obese mice by over a third,” says the study’s senior investigator, Anton Wellstein, MD, PhD, a professor of oncology and pharmacology at Georgetown Lombardi Comprehensive Cancer Center.

The treatments also reduced a number of obesity-related disorders in the mice, such as hyperglycemia — excess blood sugar that is often linked to diabetes — and eliminated the fat in their once fatty livers. Clinical as well as microscopic examination of the mice showed no side effects, researchers say.

Obesity, which affects more than 650 million people worldwide, is the major driver for metabolic syndromes, which includes disorders such as insulin resistance, glucose intolerance, hypertension and elevated lipids in the blood.

BP3 belongs to the family of fibroblast growth factor (FGF) binding proteins (BP). FGFs are found in organisms ranging from worms to humans and are involved in a wide range of biological processes, such as regulating cell growth, wound healing and response to injury. Some FGFs act like hormones.

BP1, 2 and 3 are “chaperone” proteins that latch on to FGF proteins and enhance their activities in the body. Wellstein has long researched the BP1 gene because its production is elevated in a range of cancers, suggesting that growth of some cancers is linked to the excess delivery of FGFs. Only recently has Wellstein turned his attention, and that of his lab and colleagues, to BP3 to understand its role.

File:House mouse.jpg
Credit:  Wikimedia Commons

The researchers found that this chaperone binds to three FGF proteins (19, 21 and 23) that are involved in the control of metabolism. FGF19 and FGF 21 signaling regulates the storage and use of carbohydrates (sugars) and lipids (fats). FGF23 controls phosphate metabolism.

“We found that BP3 exerts a striking contribution to metabolic control,” Wellstein says. “When you have more BP3 chaperone available, FGF19 and FGF21 effect is increased through the increase of their signaling. That makes BP3 a strong driver of carbohydrate and lipid metabolism. It’s like having a lot more taxis available in New York City to pick up all the people who need a ride.”

“With metabolism revved up, sugar in the blood, and fat processed in the liver are used for energy and is not stored,” Wellstein says. “And warehouses of fat are tapped as well. For example, the job of FGF21 is to control break down of fat, whether it is stored or just eaten.”

While the study results are exciting, additional research is required before BP3 protein can be investigated as a human therapy for metabolic syndromes, he says.

Contributing investigators include Elena Tassi, PhD, and Khalid A. Garman, MD, PhD, from Georgetown Lombardi, both co-lead authors; Marcel O. Schmidt, PhD, Xiating Ma, medical student Khaled W. Kabbara, Aykut Uren, MD, York Tomita, PhD, and Anna T. Riegel, PhD, from Georgetown Lombardi; Christopher S. Wilcox, MD, PhD, from Georgetown University School of Medicine; Mattias Carlstrom, PharmD, PhD, from the Karolinska Institute in Stockholm and Regina Goetz, PhD, and Moosa Mohammadi, PhD, from New York University School of Medicine.

Georgetown University has an issued patent (US 9,789,160) and a pending patent application on the technology described in the manuscript. Wellstein is named as an inventor on both.

This research was supported by Georgetown University institutional funds, NIH grants (P01 HL068686, R01 CA71508 and P30 CA51008), and by the Swedish Research Council (2016-01381).



Contacts and sources:
Karen Teber
Georgetown University Medical Center


Citation: Fibroblast Growth Factor Binding Protein 3 (FGFBP3) impacts carbohydrate and lipid metabolism.
Elena Tassi, Khalid A. Garman, Marcel O. Schmidt, Xiaoting Ma, Khaled W. Kabbara, Aykut Uren, York Tomita, Regina Goetz, Moosa Mohammadi, Christopher S. Wilcox, Anna T. Riegel, Mattias Carlstrom, Anton Wellstein. Scientific Reports, 2018; 8 (1) DOI: 10.1038/s41598-018-34238-5    .




Study Reconstructs Neandertal Ribcage, Offers New Clues to Ancient Human Anatomy



An international team of scientists has completed the first 3D virtual reconstruction of the ribcage of the most complete Neandertal skeleton unearthed to date, potentially shedding new light on how this ancient human moved and breathed.



The team, which included researchers from universities in Spain, Israel, and the United States, including the University of Washington, focused on the thorax — the area of the body containing the rib cage and upper spine, which forms a cavity to house the heart and lungs. Using CT scans of fossils from an approximately 60,000-year-old male skeleton known as Kebara 2, researchers were able to create a 3D model of the chest — one that is different from the longstanding image of the barrel-chested, hunched-over “caveman.” The conclusions point to what may have been an upright individual with greater lung capacity and a straighter spine than today’s modern human.

Patricia Kramer, a University of Washington professor of anthropology, is part of an international team that completed a virtual 3D reconstruction of portions of a Neandertal skeleton. Here, she shows part of the collection of model Neandertal skulls at Denny Hall

Credit: .Dennis Wise/U. of Washington

The study is published Oct. 30 in Nature Communications.

“The shape of the thorax is key to understanding how Neandertals moved in their environment because it informs us about their breathing and balance,” said Asier Gomez-Olivencia, an Ikerbasque Fellow at the University of the Basque Country and the study’s lead author.

And how Neandertals moved would have had a direct impact on their ability to survive on the resources available to them, said Patricia Kramer, professor in the UW Department of Anthropology and corresponding author on the paper.

“Neandertals are closely related to us with complex cultural adaptations much like those of modern humans, but their physical form is different from us in important ways,” she said. “Understanding their adaptations allows us to understand our own evolutionary path better.”
Read related articles from PBS NOVA and CNN.

Neandertals are a type of human that emerged about 400,000 years ago, living mostly from what is today Western Europe to Central Asia. They were hunter-gatherers who, in some areas, lived in caves and who weathered several glacial periods before going extinct about 40,000 years ago. Studies in recent years have suggested that Neandertals and early Homo sapiensinterbred, because evidence of Neandertal DNA has turned up in many populations.

Over the past 150 years, Neandertal remains have been found at many sites in Europe, Asia and the Middle East. This team worked with a skeleton labeled Kebara 2, also known as “Moshe,” which was found in Kebara Cave in Northern Israel’s Carmel mountain range in 1983. Though the cranium is missing, the remains of the young adult male are considered one of the most complete Neandertal skeleton ever found. Two different forms of dating of the surrounding soil, thermoluminescence and electron spin resonance, put the age at somewhere between 59,000 and 64,000 years.

Models of Neandertal bones, including skulls, a pelvis and a hand, are housed in collections in the UW Department of Anthropology
. Dennis Wise/U. of Washington

Discoveries and studies of other Neandertal remains in the 19th and early 20th centuries gave rise to theories and images of a stereotypical, hunched-over caveman. Over time, further research clarified scientific understanding of many Neandertal traits, but some debate has lingered over the structure of the thorax, the capacity of the lungs and what conditions Neandertals might have been able to adapt to, or not.

Over the past decade, virtual reconstruction has become more commonplace in biological anthropology, Kramer explained. The approach is useful with fossils such as the thorax, where fragile bones make physical reconstruction difficult and risky.

Nearly two years ago, the same research team created a virtual reconstruction of the Kebara 2 spine, the first step in updating theories of Neandertal biomechanics. The team’s paper, published in the book “Human Paleontology and Prehistory,” reaffirmed the likelihood of upright posture but pointed to a straighter spine than that of modern humans.

For this model of the thorax, researchers used both direct observations of the Kebara 2 skeleton, currently housed at Tel Aviv University, and medical CT scans of vertebrae, ribs and pelvic bones, along with 3D software designed for scientific use. “This was meticulous work,” said Alon Barash, a lecturer at Bar Ilan University in Israel. “We had to CT scan each vertebra and all of the ribs fragments individually and then reassemble them in 3D.”

They then used a technique called morphometric analysis to compare the images of Neandertal bones with medical scans of bones from present-day adult men. “In the reconstruction process, it was necessary to virtually ‘cut’ and realign some of the parts that showed deformation, and mirror-image some of those that were not so well-preserved in order to get a complete thorax,” said Gomez-Olivencia.

The reconstruction of the thorax, coupled with the team’s earlier finding, shows ribs that connect to the spine in an inward direction, forcing the chest cavity outward and allowing the spine to tilt slightly back, with little of the lumbar curve that is part of the modern human skeletal structure. “The differences between a Neandertal and modern human thorax are striking,” said Markus Bastir, senior research scientist at the Laboratory of Virtual Anthropology at the National Museum of Natural History in Spain.

This image from the virtual reconstruction shows how the ribs attach to the spine in an inward direction, forcing an even more upright posture than in modern humans.




Credit: University of Washington

“The Neandertal spine is located more inside the thorax, which provides more stability,” said Gomez-Olivencia. “Also, the thorax is wider in its lower part.” This shape of the rib cage suggests a larger diaphragm and thus, greater lung capacity.

“The wide lower thorax of Neandertals and the horizontal orientation of the ribs suggest that Neandertals relied more on their diaphragm for breathing,” said senior author Ella Been of Ono Academic College. “Modern humans, on the other hand, rely both on the diaphragm and on the expansion of the rib cage for breathing. Here we see how new technologies in the study of fossil remains is providing new information to understand extinct species.”

What that means for how Kebara 2 lived is ripe for further research, Kramer said. How did Neandertals breathe, and for what physical demands might they have needed powerful lungs? What does that tell us about how they moved, and the environment in which they lived? Did any of these physical traits make them more or less adaptive to climate change?

Reconstructing the thorax was an exercise in starting from scratch, deliberately trying to avoid being influenced by past theories of how Neandertals looked or lived, Kramer said.

“Thinking through all the permutations of the different fragments, it was like a jigsaw without all the pieces. What do the pieces tell us?” she said. “People have told you it should be a certain way, but you want to make sure you’re not over-reconstructing, or reconstructing it the way you think it should be. You’re trying to maintain a neutral approach.”

Other authors of the study were Daniel Garcia-Martinez of the National Museum of Natural History and Mikel Arlegi, of the University of the Basque Country.

Contacts and sources: 
Kim Eckart
University of Washington

Citation: 3D virtual reconstruction of the Kebara 2 Neandertal thorax
Asier Gómez-Olivencia, Alon Barash, Daniel García-Martínez, Mikel Arlegi, Patricia Kramer, Markus Bastir & Ella Been Nature Communicationsvolume 9, Article number: 4387 (2018)  https://www.nature.com/articles/s41467-018-06803-z