Tuesday, January 22, 2013

Space Spider To Snatch Satellites For Servicing And Spare Parts





Communication satellites in geosynchronous orbit (GEO), approximately 22,000 miles above the earth, provide vital communication capabilities to warfighters. Today, when a communication satellite fails, it usually means the expensive prospect of having to launch a brand new replacement communication satellite. Many of the satellites which are obsolete or have failed still have usable antennas, solar arrays and other components which are expected to last much longer than the life of the satellite, but currently there is no way to re-use them.


Credit:  DARPA

The goal of the Phoenix program is to develop and demonstrate technologies to cooperatively harvest and re-use valuable components from retired, nonworking satellites in GEO and demonstrate the ability to create new space systems at greatly reduced cost. Phoenix seeks to demonstrate around-the-clock, globally persistent communication capability for warfighters more economically, by robotically removing and re-using GEO-based space apertures and antennas from de-commissioned satellites in the graveyard or disposal orbit.

The Phoenix program envisions developing a new class of very small ‘satlets,’ similar to nano satellites, which could be sent to the GEO region more economically as a “ride along” on a commercial satellite launch, and then attached to the antenna of a non-functional cooperating satellite robotically, essentially creating a new space system. A payload orbital delivery system, or PODS, will also be designed to safely house the satlets for transport aboard a commercial satellite launch. A separate on-orbit ‘tender,’ or satellite servicing satellite is also expected to be built and launched into GEO. Once the tender arrives on orbit, the PODS would then be released from its ride-along host and link up with the tender to become part of the satellite servicing station’s ‘tool belt.’ The tender plans to be equipped with grasping mechanical arms for removing the satlets and components from the PODS using unique space tools to be developed in the program. 

Credit: DARPA

The traditional process of designing, developing, building and deploying space technologies is long and expensive. Through Phoenix DARPA seeks to hasten the insertion of emerging technologies into space system development at much lower cost.

Critical to the success of the Phoenix program is active participation from the international and non-traditional space communities involved in vital technical areas such as:
Radiation tolerant micro-electronics and memory storage
Distributed “wireless” mobile platform solutions for ad-hoc connectivity and control Industrial electronic control systems
Terrestrial micro-miniature guidance and control measurement units
Industrial robotics end effectors and tool changeout mechanisms and techniques
Computer-assisted medical robotics micro-surgical tele-presence, tools and imaging
Remote underwater imaging/vision technologies used in the offshore oil and gas drilling industry
Terrestrial manufacturing of high volume micro-electronics and computer data storage
Terrestrial thermal management design technology of electronic devices and systems
Low-cost industrial manufacturing of high volume sheet metal and other structural materials
Additive manufacturing on various structural materials

The first keystone mission of the Phoenix program in 2015 plans to demonstrate harvesting an existing, cooperative, retired satellite aperture, by physically separating it from the host non-working satellite using on-orbit grappling tools controlled remotely from earth. The aperture will then be reconfigured into a ‘new’ free-flying space system and operated independently to demonstrate the concept of space “re-use.” 

Source: DARPA
 

No comments:

Post a Comment