Friday, September 28, 2012

Throwing Asteroids From Their Orbits, Making Planets Into Giant Electromagnetic Generators, Pulsars Wreak Havoc

Pulsars are among the most extreme stars in the Universe: dense balls of matter which are heavier than the Sun, yet only a few tens of kilometres in diameter. They rotate rapidly (up to several hundred revolutions per second) and flash like lighthouse beacons – hence the name, which is short for pulsating star. And yet despite these exotic properties, pulsars are like our Sun in one way at least: two have been observed to be home to planetary systems. 

Planets around a pulsar: This artist's impression shows the planetary system around pulsar PSR B1257+12, one of two pulsars known to be host to at least one planet. Research by Fabrice Mottez (Paris Observatory), presented at the European Planetary Sciences Congress on 28 September, finds that planets around pulsars may have powerful electromagnetic wakes around them. These wakes have implications both for how pulsar planets form, and for how they can be detected.

Credit: NASA/JPL-Caltech/R. Hurt (SSC)

In work presented to the European Planetary Science Congress in Madrid on Friday 28 September, Fabrice Mottez (Paris Observatory) makes a series of predictions about the properties of planetary systems around pulsars. His team’s work has implications both for how to discover these planets, and for their formation, evolution and properties.

"Pulsars and their planetary systems work a bit like giant electric generators," says Mottez. "If the conditions are right, the magnetic field and stellar wind of the pulsar can interact with planets and create a powerful electromagnetic wake around the planets."

This phenomenon may be visible from Earth, which would provide a new method of detecting planets around pulsars. But it has even greater importance for how pulsar planet systems evolve.

When objects such as stars or planets radiate, they lose energy. And while the forces unleashed by the wakes around pulsar planets are not large enough to have a major effect on the planets’ orbits, they are expected to have much more profound effects on smaller bodies like asteroids and comets.

"Depending on the direction of their orbits, asteroids and comets could be thrown out into distant orbits or dragged down onto the pulsar's surface. Even for objects as big as a kilometre in diameter, this could happen in less than 10 000 years, which is very rapid on astronomical timescales," says Mottez. 

The Crab pulsar: This image, which combines data from the Hubble Space Telescope (visible light), Spitzer Space Telescope (infrared) and Chandra X-ray Observatory (X-rays) shows the Crab Pulsar. The X-ray emissions (in blue) show the location of high-energy phenomena around the rapidly spinning star. The visible and infrared light (shown in red) traces the location of debris thrown out by the supernova that destroyed the Crab Pulsar’s progenitor star. Although it is not known whether the Crab Pulsar has planets, it is thought that the debris surrounding pulsars can form planetary systems. Work by Fabrice Mottez (Paris Observatory), presented at the European Planetary Sciences Congress on 28 September, shows how electromagnetic phenomena in pulsar systems can greatly affect the motion of small bodies like asteroids and comets that form the building blocks of planets. 
Credit: X-Ray: NASA/CXC/J.Hester (ASU); Optical: NASA/ESA/J.Hester & A.Loll (ASU); Infrared: NASA/JPL-Caltech/R.Gehrz (Univ. Minn.)

While these phenomena have only a small impact on the orbital motions of planets, Mottez's work is an important step towards better understanding how circumpulsar planets may form.

Pulsars are the dense cores leftover from large stars after they explode in a supernova. Although supernovae are extremely violent, it is thought that planets surrounding an exploding star can survive the blast, albeit in a heavily disrupted orbit. However, planetary survivors like these are not the only kind of planet that could in theory exist around a pulsar.

Planets form from discs of matter that gradually accrete around stars, usually when the star has just been born. However, it is thought that the debris thrown out by supernovae could provide material that triggers a second burst of planet formation around pulsars, shortly after the explosion.

The disruptive effects of the electromagnetic wake on small objects could have profound consequences for the formation of such second generation planets.
Contacts and sources:
Fabrice Mottez  

1 comment:


    Hello everyone, My name is Mrs. Carolin Glowski, I'm from Europe, am here to testify of how i got my loan from BENJAMIN LOAN FINANCE after i applied Two times from various loan lenders who claimed to be lenders right here this forum, i thought their lending where real and i applied but they never gave me loan until a friend of mine introduce me to {Dr. Benjamin Scarlet Owen} the C.E.O of BENJAMIN LOAN FINANCE who promised to help me with a loan of my desire and he really did as he promised without any form of delay, I never thought there are still reliable loan lenders until i met {Dr. Benjamin Scarlet Owen} who really helped me with my loan and changed my life for the better. I don't know if you are in need of an urgent loan also, So feel free to contact Dr. Benjamin Scarlet Owen on his email address