Wednesday, September 26, 2012

Extreme Climate Change Linked To Early Animal Evolution

UC Riverside geoscientists help tie spike in ancient oceanic oxygen levels to 'Snowball Earth' event

An international team of scientists, including geochemists from the University of California, Riverside, has uncovered new evidence linking extreme climate change, oxygen rise, and early animal evolution.

This photo shows researchers studying exposures of the Doushanto Formation. Located in China, the formation is most notable for its scientific contributions in the hunt for Precambrian life.
 
Credit: M. Kennedy.

A dramatic rise in atmospheric oxygen levels has long been speculated as the trigger for early animal evolution. While the direct cause-and-effect relationships between animal and environmental evolution remain topics of intense debate, all this research has been hampered by the lack of direct evidence for an oxygen increase coincident with the appearance of the earliest animals — until now.

In the Sept. 27 issue of the journal Nature, the research team, led by scientists at the University of Nevada, Las Vegas, offers the first evidence of a direct link between trends in early animal diversity and shifts in Earth system processes.

The fossil record shows a marked increase in animal and algae fossils roughly 635 million years ago. An analysis of organic-rich rocks from South China points to a sudden spike in oceanic oxygen levels at this time — in the wake of severe glaciation. The new evidence pre-dates previous estimates of a life-sustaining oxygenation event by more than 50 million years.

"This work provides the first real evidence for a long speculated change in oxygen levels in the aftermath of the most severe climatic event in Earth's history — one of the so-called 'Snowball Earth' glaciations," said Timothy Lyons, a professor of biogeochemistry at UC Riverside.

A purported Ediacaran embryo contained within an acritarch from the Doushantuo formation
Credit: Wikipedia

The research team analyzed concentrations of trace metals and sulfur isotopes, which are tracers of early oxygen levels, in mudstone collected from the Doushantuo Formation in South China. The team found spikes in concentrations of the trace metals, denoting higher oxygen levels in seawater on a global scale.

"We found levels of molybdenum and vanadium in the Doushantuo Formation mudstones that necessitate that the global ocean was well ventilated. This well-oxygenated ocean was the environmental backdrop for early animal diversification," said Noah Planavsky, a former UCR graduate student in Lyons's lab now at CalTech.

The high element concentrations found in the South China rocks are comparable to modern ocean sediments and point to a substantial oxygen increase in the ocean-atmosphere system around 635 million years ago. According to the researchers, the oxygen rise is likely due to increased organic carbon burial, a result of more nutrient availability following the extreme cold climate of the 'Snowball Earth' glaciation when ice shrouded much of Earth's surface.

Lyons and Planavsky argued in research published earlier in the journal Nature that a nutrient surplus associated with the extensive glaciations may have initiated intense carbon burial and oxygenation. Burial of organic carbon — from photosynthetic organisms — in ocean sediments would result in the release of vast amounts of oxygen into the ocean-atmosphere system.

"We are delighted that the new metal data from the South China shale seem to be confirming these hypothesized events," Lyons said.

The joint research was supported by grants from the National Science Foundation, the NASA Exobiology Program, and the National Natural Science Foundation of China. Besides Lyons and Planavsky, the research team includes Swapan K. Sahoo (first author of the research paper) and Ganqing Jiang (principal investigator of the study) of the University of Nevada, Las Vegas; Brian Kendall and Ariel D. Anbar of Arizona State University; Xinqiang Wang and Xiaoying Shi of the China University of Geosciences (Beijing); and UCR alumnus Clint Scott of United States Geological Survey.




Contacts and sources:
Iqbal Pittalwala
University of California - Riverside

1 comment:

  1. TESTIMONY ON HOW I GOT MY LOAN AMOUNT FROM A RELIABLE AND TRUSTED LOAN COMPANY LAST WEEK. Email for immediate response drbenjaminfinance@gmail.com

    Hello everyone, My name is Mrs. Carolin Glowski, I'm from Europe, am here to testify of how i got my loan from BENJAMIN LOAN FINANCE after i applied Two times from various loan lenders who claimed to be lenders right here this forum, i thought their lending where real and i applied but they never gave me loan until a friend of mine introduce me to {Dr. Benjamin Scarlet Owen} the C.E.O of BENJAMIN LOAN FINANCE who promised to help me with a loan of my desire and he really did as he promised without any form of delay, I never thought there are still reliable loan lenders until i met {Dr. Benjamin Scarlet Owen} who really helped me with my loan and changed my life for the better. I don't know if you are in need of an urgent loan also, So feel free to contact Dr. Benjamin Scarlet Owen on his email address drbenjaminfinance@gmail.com


    THANKS

    ReplyDelete