Friday, August 27, 2010

UK Researchers Release Draft Sequence Coverage Of Wheat Genome, Will Aid Global Food Shortage

A team of UK researchers, funded by the Biotechnology and Biological Sciences Research Council, has publicly released the first sequence coverage of the wheat genome. The release is a step towards a fully annotated genome and makes a significant contribution to efforts to support global food security and to increase the competitiveness of UK farming.

Wheat production world-wide is under threat from climate change and an increase in demand from a growing human population. Liverpool scientists, in collaboration with the University of Bristol and the John Innes Centre, have sequenced the entire wheat genome and will make the DNA data available to crop breeders to help them select key agricultural traits for breeding.

Bread wheat, with an estimated world harvest of more than 550 million tonnes, is one of the most important food crops in the world and is worth more than £2 billion to the UK's agricultural industry. Wheat breeders, however, have few genetic tools to help them select key agricultural traits for breeding and do not always know the genes responsible for the trait they need. Scientists have analysed the wheat genome, which is five times larger than the human genome, to give breeders the tools required to select traits for a healthy yield.

Professor Neil Hall, from the Institute of Integrative Biology, explains: "Sequencing the human genome took 15 years to complete, but with huge advances in DNA technology, the wheat genome took only a year. The information we have collected will be invaluable in tackling the problem of global food shortage. We are now working to analyse the sequence to highlight natural genetic variation between wheat types, which will help significantly speed up current breeding programmes."

The project, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), was undertaken at the University's Centre for Genomic Research. The facility is home to five next generation genome analysers, which can read DNA hundreds of times faster than the systems that were used to sequence the human genome.

Dr Anthony Hall added: "Wheat production is already under pressure with failures in the Russian harvest driving up world wheat prices. It is predicted that within the next 40 years world food production will need to be increased by 50 per cent. Developing new, low input, high yielding varieties of wheat, will be fundamental to meeting these goals. Using this new DNA data we will identify variation in gene networks involved in important agricultural traits such as disease resistance, drought tolerance and yield."

Professor Keith Edwards, from the University of Bristol, said: "In a short space of time we have delivered most of the sequences necessary for plant breeders to identify genetic differences in wheat. The public release of the data will dramatically increase the efficiency of breeding new crop varieties."

The genome sequences released comprise five read-throughs of a reference variety of wheat and give scientists and breeders access to 95% of all wheat genes. This is among the largest genome projects undertaken, and the rapid public release of the data is expected to accelerate significantly the use of the information by wheat breeding companies.

The team involved Prof Neil Hall and Dr Anthony Hall at the University of Liverpool, Prof Keith Edwards and Dr Gary Barker at the University of Bristol and Prof Mike Bevan at the John Innes Centre, a BBSRC-funded Institute.
Prof Edwards said: "The wheat genome is five times larger than the human genome and presents a huge challenge for scientists. The genome sequences are an important tool for researchers and for plant breeders and by making the data publicly available we are ensuring this publicly funded research has the widest possible impact."

Universities and Science Minister David Willetts said: "This is an outstanding world class contribution by the UK to the global effort to completely map the wheat genome. By using gene sequencing technology developed in the UK we now have the capability to improve the crops of the future by simply accelerating the natural breeding process to select varieties that can thrive in challenging conditions."

The genome data released are in a 'raw' format, comprising sequence reads of the wheat genome in the form of letters representing the genetic 'code'. A complete copy of the genome requires further read-throughs, significant work on annotation and the assembly of the data into chromosomes. Large-scale, rapid sequencing programmes such as this have been made technically feasible by advanced technology genome sequencing platforms, including one based on BBSRC-funded research conducted in the UK in the 1990s.The majority of the sequencing work for this particular project was done using the 454 Life Science platform, developed in the US.

Prof Hall said: "The genome sequence data of this reference variety, Chinese Spring wheat, will now allow us to probe differences between varieties with different characteristics. By understanding the genetic differences between varieties with different traits we can start to develop new types of wheat better able to cope with drought, salinity or able to deliver higher yields. This will help to protect our food security while giving UK plant breeders and farmers a competitive advantage."

The sequence data can be used by scientists and plant breeders to develop new varieties through accelerated conventional breeding or other technologies.

Prof Bevan, a member of the Coordinating Committee of the International Wheat Genome Sequencing Consortium, said: "The sequence coverage will provide an important foundation for international efforts aimed at generating a complete genome sequence of wheat in the next few years."

Prof Doug Kell, BBSRC Chief Executive, said: "Recent short-term price spikes in the wheat markets have shown how vulnerable our food system is to shocks and potential shortages. The best way to support our food security is by using modern research strategies to understand how we can deliver sustainable increases in crop yields, especially in the face of climate change. Genome sequencing of this type is an absolutely crucial strategy, building on previous BBSRC-funded work. Knowledge of these genome sequences will now allow plant breeders to identify the best genetic sequences to use as markers in accelerated breeding programmes."

Dr Jane Rogers, Member of the Coordinating Committee of the International Wheat Genome Sequencing Consortium and Director of BBSRC's The Genome Analysis Centre, said: "The public release of the wheat genome data will be a useful resource for scientists and the plant breeding community and will provide a foundation to identify genetic differences between wheat varieties. In recent years genomics technology has advanced to a point that scientists can now produce sequence data for plants with genomes as large as wheat at a rate unimaginable a few years ago. This is an impressive achievement, notwithstanding the significant hurdles we still face to fully interpret and understand the data."

A key feature of this research has been the quick release of the data into the public domain to allow other scientists and wheat breeding companies to rapidly employ it in practical applications. Richard Summers, Vice Chairman of the British Society of Plant Breeders, said: "The wheat breeding community has been greatly impressed with the collaborative approach taken in this project. The team brought together world class skills in sequencing and wheat genetics to deal with a major barrier in wheat breeding. This is an excellent example of how to achieve technology transfer from research lab through to practical deployment."

BBSRC is a partner in Global Food Security, a multi-agency programme that brings together the food-related research interests of Research Councils, Government Departments and Executive Agencies.

Contacts and sources:

No comments:

Post a Comment