Sunday, March 28, 2010

Nanostructured Catalysts to Create Artificial Leaf for Carbon Capture and Conversion to Fuel

At Imperial College London and University College London, a research team led by Dr Charlotte Williams will reduce CO2 with hydrogen, electrical energy or photon energy to produce vehicle fuels in a three year $2.49 million (£1,675,521) project. . 

To achieve this, they will develop nanostructured catalysts that operate using solar or other renewable energy inputs. These will be used in a process that mimics CO2 activation in nature – an ‘artificial leaf’ concept – that effectively reverses the polluting process of burning fossil fuels. The team will collaborate with industrial partners Millennium Inorganic Chemicals, Cemex, Johnson Matthey and E.ON Engineering Limited.  Other members of the research team include Professor JR Durrant, Dr K Hellgardt,Professor SG Kazarian, Professor GH Kelsall Professor M Shaffer, Dr J Tang and Dr J Woods.                                                               

Dr Williams, of Imperial College London, says: “The key economic issue lies in decreasing the energy required for the processes. We hope to achieve this by developing new, highly active metal/metal oxide nanostructured catalysts, which offer superior performance.”

Fossil fuels are society's major energy sources and the primary raw materials for the chemicals industry. However, there are significant concerns associated with their sustainability, depletion and cost. In particular, many of the UK's North Sea reserves will soon become uneconomic / depleted, so we need to find alternatives urgently. Furthermore, the combustion of fossil fuels, e.g. during energy conversion, releases carbon dioxide and other greenhouse gases that contribute to global warming.

The UK is already committed to an 80% reduction in greenhouse gas emissions by 2050, but significantly greater reductions (85%) are likely to be necessary in order to prevent devastating climate change (>2 degree C increase in temperature). Energy conversion for electricity and transport is responsible for 74% of CO2 emissions; new sustainable energy sources are essential. These new energy sources must be CO2 neutral or, even better, CO2 depleting. One solution is to use carbon dioxide itself as the fuel and feedstock material. Our solution is to react CO2 with H2 or water, using chemical, photochemical or electrochemical catalysts, to produce liquid transport fuels, such as methanol.

Flue gases from power stations and/or industrial process, such as metal/alloy manufacture, are major contributors to UK CO2 emissions and will be abundant sources of CO2 for the foreseeable future. Many other industrial emissions also contain considerable concentrations of CO2 including those derived from biological processes, e.g. fermentation. The hydrogen required will be produced by water electrolysis powered by solar or other renewable source of energy.

The key economic issue lies in decreasing the energy required for the processes. We aim to achieve this via the development of new, highly active metal/metal oxide nano-structured catalysts, which offer superior performance due to their high surface areas, reduced loadings, low overpotentials and which can be synthesised controllably. We shall use three parallel, yet complementary, approaches to energise the process: direct chemical (thermal) hydrogenation, electrochemical and photochemical reductions of carbon dioxide and water.

The team comprises scientist, engineers and environmental policy researchers at Imperial College London and University College London. The team has expertise in chemical catalysis, electrochemistry, photochemistry, reactor engineering, materials science, nanotechnology, sustainable chemistry and environmental science. We have a significant track record in the activation and use of carbon dioxide as a resource. The project will also involve collaborations with, and be support by, the Imperial College London Centre for Carbon Capture and Storage (CCS), the Energy Futures Lab and the Grantham Institute for Climate Change.

No comments:

Post a Comment