Friday, November 20, 2009

Revolutionary "DION" Technology Will Allow Moore's Law to Continue in Spirit


NANOSYS, Inc. researchers David P. Stumbo and Richard Compton; (Sunnyvale, CA)   (Palo Alto, CA) developed a “revolutionary new thin-film technology” based on “dense, inorganic and oriented nanowire thin-films (DION thin-films)” that will permit the continuation of Moore’s Law.  DION thin-films can enable high-performance large-area macroelectronics with multiple different electronic, electro-optic and electromechanical functionalities all on a single lightweight flexible substrate that can be fabricated over large areas(>10 square meters) at a cost of less than $100 per square foot. . An important aspect of DION thin-film technology is that carrier conduction occurs within aligned single crystal nanowires. Hence single crystal mobility can be achieved in these macroelectronic devices. Furthermore, by exploiting quantum effects in nanowires, devices realized with the present invention can enjoy performances exceeding that of conventional bulk single crystals, according to U.S. Patent 7,619,562.

Figures 1 and 2 show materials and applications for the DION Technology.  


Another important aspect of DION thin-film technology is that the high temperature steps required to synthesize single-crystal nanowires, which include an intrinsic high-quality gate-dielectric shell and a conformal gate-electrode around each individual nanowire, can be carried out off-line in reactors before the nanowires come into contact with the substrate. As a result, all processing steps that occur in the presence of the substrate material can be done at low temperature (<100.degree. C.), allowing the use of many different substrate materials (e.g., flexible, low-T.sub.g (temperature of glass transition) plastics). DION thin-film technology can allow the fabrication of large-area flexible macroelectronics with performance exceeding that of single-crystal silicon.

Additionally, DION thin-film technology can allow the fabrication of mixed-functionality monolithic electronics that cannot be fabricated using any current technology (e.g., combining the mobility of InAs, the CMOS performance of Si, and the light emission of GaN all on a single substrate). The result is a large-area macroelectronics technology that can outperform existing technologies, while producing lightweight, flexible electronics over large areas at low cost.

While this technology enables numerous possible combinations of functionality into a single film (e.g., electronic, optical, magnetic, ferroelectric, piezoelectric, etc), the following discussion focuses on high-performance electronics. In particular, the discussion focuses on the integration of high-performance n- and p-channel silicon nanowires for CMOS functionality (for low-power devices), and extreme-mobility Ill-V materials such as InAs and InP for RF processing, all on a single monolithic plastic substrate. Of course, it will be recognized by one of ordinary skill that a large number of different uses, applications, and systems can be enabled by the technology. 

The mixed-composition DION thin-film technology can enable the development of a variety of unique applications ranging from RF communications, to sensor arrays, to X-ray imagers, to flexible displays and electronics, and more. In addition, it can establish a foundation for a variety of high-value commercial technologies, including lightweight disposable or flexible displays with driver-electronics printed onto a single substrate, "penny"-RFID tags for universal RF-barcoding, integrated sensor networks for industrial monitoring and security applications, and phased-array antennas for wireless communications. The DION technology can revolutionize both the military and commercial world of large-area electronics.

The mixed-film macroelectronics technology developed by Nanosys represents a fundamental underpinnings of a truly unifying platform for universal functional device integration. The description of the present invention  focuses on tailoring functionality to produce high-performance transistors over large areas using nanowires with compositions selected for high conduction-mobility and integrated dielectric layers. However, by incorporating alternative nanowire materials, the same platform can be expanded to include high-performance optical, magnetic, ferroelectric, and piezoelectric properties as well. Building off of this fundamental platform, the present invention incorporates multiple different functionalities (e.g., high-performance electronic plus active optical) onto the same substrate to impart multiple different functionalities into the same material. This technology represents a true separation of structure and function: a paradigm shift in materials technology.

At its core, the technology described represents a fundamental unifying materials platform capable of eventually enabling global integration of all different functionalities into a single device that can be fabricated using a standard linear process. Similar to the silicon IC, as the platform expands, all levels of functional-integration can be incorporated, indefinitely extending the spirit of (if not the specific definition of) Moore's Law, according to Stumbo and Compton. 


With mixed-composition DION thin-films, all of these characteristics can be embodied into a single monolithic substrate that can then be patterned and processed using traditional lithographic technologies to fabricate an entire functional system on a rollable sheet of plastic. This technology represents an unprecedented advance in the development of electronic systems for military applications that are space, weight, and power constrained.  The DION technology  can leverage all of the developments of uniquely functional single-nanowire electronic devices that have been developed so as to impart any combination of these unique single-nanowire characteristics (or all of them) onto a single monolithic macroelectronic system on plastic.




No comments:

Post a Comment