Friday, November 27, 2009

Honeywell International Functional Nano-SiO2 Layered Hemostatic Materials

Honeywell International Inc scientist Robert L. Bedard has created functional nano-layered hemostatic materials and devices which utilize a nano-coating of an oxide such as silica, a silicate or another effective oxide on a surface to accelerate blood clotting in mammalian animals. The hemostatic layer has a thickness that is effective for the hemostasis, yet can be made thin enough to result in a resorbable film which can either be applied to a biocompatible or resorbable device that can be used in surgical applications as well as in topical applications such as trauma, according to U.S. Patent Application 20090291124.  The wound dresssing with nano-coatings of oxides are able to stop bleeding faster than conventional products.

There is a need for an effective hemostatic product that can be delivered in an easy to use form. Until recently, porous carriers or porous articles, e.g. non-woven fibrous articles containing molecular sieves and hydrophilic oxides had not been disclosed for use as hemostatic devices. Such hemostatic articles comprising molecular sieves have now been found to provide ease of application, effective hemostasis, and reduction in exposure of the patient to high temperature increases owing to high heats of adsorption. These products are also useful in surgical applications that were not available using a powdered molecular sieve or hydrophilic oxide product. There is a further need on some occasions for a hemostatic product that is effective for a period of time but that is able to dissolve or disintegrate in the body after the hemostatic effect is no longer needed.

Honeywell uses a layer as thin as a few atomic layers to as thick as hundreds of nanometers of silica, a silicate or another effective oxide on a variety of surfaces/materials to accelerate blood coagulation. Other effective oxides include GeO2, silicogermanates, AlPO4, silicoaluminophosphates, and Fe2O3. More than one of these oxides may be used. These ultra-thin layers provide advantages or functionality beyond those that are provided by prior art materials. These advantages include biological inertness after a short time due to the degradation of the ultra-thin oxide layer in vivo, revealing a biologically inert or resorbable surface underneath. An example is nano-SiO2 coated TiO2 particles, which themselves are active in coagulation, but become inert as the thin SiO2 layer leaches off over time.

Nano-thin SiO2 coatings can be deposited on a number of surfaces such as powders, substrate surfaces, fibers, nonwoven fabrics, polymers, granules or devices via a variety of processes such as sol-gel processes, vapor deposition, or spray processes. Vapor deposition processes that can be used include chemical vapor deposition, atomic layer deposition, plasma-enhanced chemical vapor deposition and electrophoretic deposition. The devices then are sterilized and packaged by appropriate methods.

Wounds are generally classified as acute or chronic in accordance with their healing tendencies. Acute wounds from trauma or surgery include wounds such as active bleeding wound sites, e.g., wounds that have detectable, unclotted blood. The rapid control of topical bleeding at active bleeding wound sites is of critical importance in wound management, especially for the management of trauma, e.g., as a result of military exercises or surgery.

Conventional approaches such as manual pressure, cauterization, or sutures may be time consuming and are not always effective in controlling bleeding. Trauma care has received great attention recently as United States troops on a daily basis face combat situations that result in wounds accompanied by significant blood loss. In many cases, the individual may have been able to survive the initial injury only to die of blood loss. Given the central role of hemostasis in trauma care, a great deal of attention has been focused on developing products that can rapidly induce clotting, stop the bleeding, form a tight bond to the wound surface, facilitate scab formation and be compatible with the host tissue.

1 comment:

  1. Nanolayers with effective formulations should focus technical design to strict standards, and lead to further refinement by elucidation of the femto/attoscale data horizon of electron, energy, and force field topologies and animation.

    Recent advancements in quantum science have produced the picoyoctometric, 3D, interactive video atomic model imaging function, in terms of chronons and spacons for exact, quantized, relativistic animation. This format returns clear numerical data for a full spectrum of variables. The atom's RQT (relative quantum topological) data point imaging function is built by combination of the relativistic Einstein-Lorenz transform functions for time, mass, and energy with the workon quantized electromagnetic wave equations for frequency and wavelength.

    The atom labeled psi (Z) pulsates at the frequency {Nhu=e/h} by cycles of {e=m(c^2)} transformation of nuclear surface mass to forcons with joule values, followed by nuclear force absorption. This radiation process is limited only by spacetime boundaries of {Gravity-Time}, where gravity is the force binding space to psi, forming the GT integral atomic wavefunction. The expression is defined as the series expansion differential of nuclear output rates with quantum symmetry numbers assigned along the progression to give topology to the solutions.

    Next, the correlation function for the manifold of internal heat capacity energy particle 3D functions is extracted by rearranging the total internal momentum function to the photon gain rule and integrating it for GT limits. This produces a series of 26 topological waveparticle functions of the five classes; {+Positron, Workon, Thermon, -Electromagneton, Magnemedon}, each the 3D data image of a type of energy intermedon of the 5/2 kT J internal energy cloud, accounting for all of them.

    Those 26 energy data values intersect the sizes of the fundamental physical constants: h, h-bar, delta, nuclear magneton, beta magneton, k (series). They quantize atomic dynamics by acting as fulcrum particles. The result is the picoyoctometric, 3D, interactive video atomic model data point imaging function, responsive to keyboard input of virtual photon gain events by relativistic, quantized shifts of electron, force, and energy field states and positions.

    Images of the h-bar magnetic energy waveparticle of ~175 picoyoctometers are available online at with the complete RQT atomic modeling manual titled The Crystalon Door, copyright TXu1-266-788. TCD conforms to the unopposed motion of disclosure in U.S. District (NM) Court of 04/02/2001 titled The Solution to the Equation of Schrodinger.